

XB6S-PS20D SSI 绝对值式编码器计数模块 用户手册

南京实点电子科技有限公司

版权所有 © 2024-2025 南京实点电子科技有限公司。保留所有权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

spot 和其它实点商标均为南京实点电子科技有限公司的商标。

本文档提及的其它所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受实点公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,实点公司对本文档内容不做任何明示或默示的声明或保证。由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

南京实点电子科技有限公司

地址: 江苏省南京市江宁区胜利路 91 号昂鹰大厦 11 楼

邮编: 211106 电话: 4007788929

网址: http://www.solidotech.com

目 录

1	产品概定	术	
	1.1		
	1.2	产品特性	1
2	命名规则	V	
	2.1	 命名规则	
3		数	
3	3.1	通用参数	
	3.2	数字量参数	
4		双丁里岁双	
7	4.1	面板结构	
	4.1	指示灯功能	
5	.,_	F 卸	
5			
	5.1	安装指南	
	5.2	安装拆卸步骤	
	5.3	安装拆卸示意图	
	5.4	外形尺寸	
6	接线		
	6.1	接线图	18
	6.2	接线端子定义	19
7	使用		20
	7.1	过程数据	20
	7.1.1	上行数据	20
	7.1.2	下行数据	22
	7.2	配置参数定义	23
	7.3	模块组态说明	25
	7.3.1	在 TwinCAT3 软件环境下的应用	25
	7.3.2	在 Sysmac Studio 软件环境下的应用	34

1 产品概述

1.1 产品简介

XB6S-PS20D 为插片式 SSI 绝对值式编码器计数模块,采用 X-bus 底部总线,适配本司 XB6S 系列耦合器模块,支持双通道 SSI 编码器输入、计数、探针锁存等功能。模块占用空间小、数据可靠性高、实时性高,可广泛应用于各种工业系统设备。

1.2 产品特性

- 双通道 支持两通道 SSI 编码器输入。
- 支持设置数据位长度和位置 帧长度、LSB 和 MSB 可设置。
- 支持两种编码显示 格雷码和二进制码。
- 支持双向计数 编码器正反向旋转,计数方向灵活适应。
- 探针锁存功能支持探针输入引脚发生电压变化时,锁存当前计数值。
- 体积小结构紧凑,占用空间小。
- 易诊断 创新的通道指示灯设计,紧贴通道,一目了然,检测、维护方便。
- 易组态组态、配置简单,支持各大主流主站。
- 易安装
 DIN 35 mm 标准导轨安装
 采用弹片式接线端子,配线方便快捷。

2 命名规则

2.1 命名规则

$\frac{XB}{(1)} \frac{6}{(2)(3)} - \frac{P}{(4)(5)(6)(7)(8)}$

编号	含义	取值说明			
(1)	总线类型	XB: X-bus 总线			
(2)	产品系列	6: 插片式			
(3)	产品版本	S: Strengthen, 升级版			
(4)	模块类型	P: Pulse 脉冲			
		L: Location 位置			
(5)	模块功能	S: SSI 同步串行接口协议			
(3)		T: Train (PTO: Pulse Train Output) 脉冲序列输出			
		C: Count 脉冲计数			
(6)	功能输入通道数 0、1、2、4、8				
(7)	功能输出通道数 0、1、2、4、8				
	电气特性	D: Difference 差分,正交			
		A: NPN, 24VDC			
(8)		B: PNP, 24VDC			
(8)		C: PNP/NPN, 5VDC, TTL (compatible)			
		L: NPN, 5VDC, TTL (拼音: 漏)			
		Y: PNP, 5VDC, TTL (拼音: 源)			

3 产品参数

3.1 通用参数

接口参数			
产品型号	XB6S-PS20D		
总线协议	X-bus		
过程数据量:下行	2Bytes		
过程数据量: 上行	26Bytes		
	编码器输入通道: 2 组 SSI 绝对值编码器通道		
 通道类型	探针输入通道: 4 通道 (1 路编码器配 2 路探针功能) , PNP/NPN		
旭旭尖空	普通数字量输入通道: 2 通道 (1 路编码器配 1 路普通数字量输入) , PNP/NPN		
	普通数字量输出通道:8 通道(1 路编码器配 4 路普通数字量输出),NPN		
刷新速率	1ms		
技术参数			
系统输入电源	5VDC (4.5V~5.5V)		
额定电流消耗	160mA		
功耗	0.75W		
编码器输入	2 通道		
编码器信号类型	差分信号, 5V		
数据帧长度	10~40 位		
位置值格式	支持格雷码或二进制		
位置值 LSB/MSB	可设置		
SSI 编码器时钟频率	≤2.0MHz		
读取间隔时间	可设置		
探针功能 (高速硬件锁存)	支持		
外形尺寸	106.4×25.7×72.3mm		
工作温度	-20°C~+60°C		
存储温度	-40°C~+80°C		
重量	110g		
接线方式	免螺丝快速插头		
安装方式	35mm 标准导轨安装		

相对湿度	95%,无冷凝
防护等级	IP20

3.2 数字量参数

数字量输入				
额定电压	24VDC (20.4V~28.8V)			
信号点数	6			
信号类型	NPN/PNP			
OFF 电压/OFF 电流	-3V~+5V/0.9mA 以下			
ON 电压/ON 电流	11V~30V/2.1mA 以上			
输入电流	4mA			
隔离方式	光耦隔离			
隔离耐压	500VAC			
通道指示灯	绿色 LED 灯			
数字量输出				
额定电压	24VDC (20.4V~28.8V)			
信号点数	8			
信号类型	NPN			
负载类型	阻性负载、感性负载			
单通道额定电流	Max: 500mA			
端口防护	过流保护			
隔离方式	光耦隔离			
隔离耐压	500VAC			
通道指示灯	绿色 LED 灯			

4 面板

4.1 面板结构

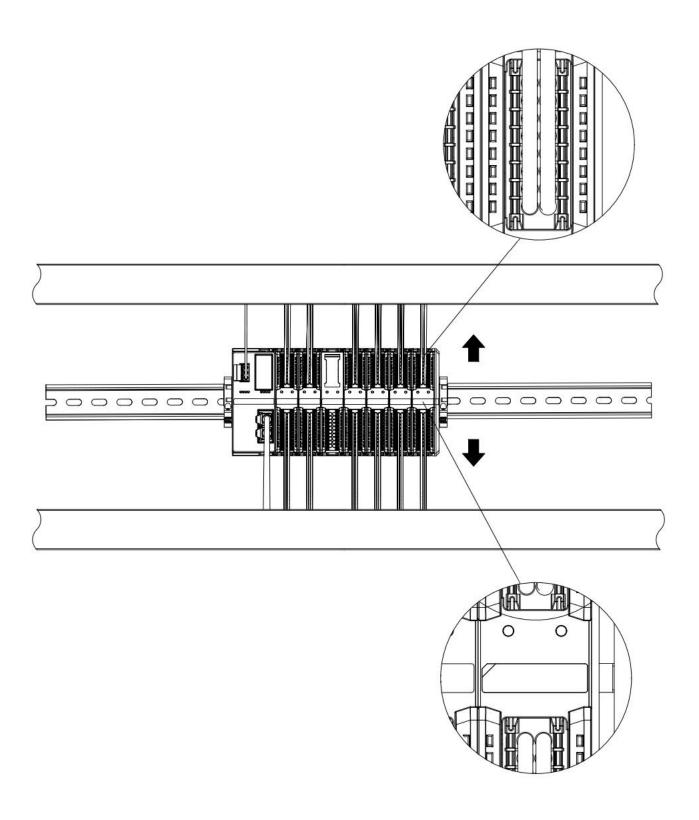
产品各部位名称

4.2 指示灯功能

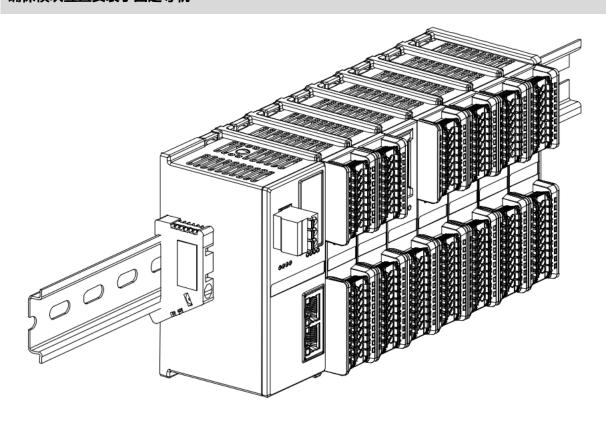
名称	标识	颜色	状态	状态描述
中海长二州	PWR	组会	常亮	电源供电正常
电源指示灯 	PVVK	绿色	熄灭	产品未上电或电源供电异常
		绿色	常亮	系统运行正常
 系统运行指示灯	SYS		闪烁 1Hz	无业务数据交互,等待建立业务数据交互
永 统运行指示队			闪烁 10Hz	固件升级
			熄灭	系统未工作
*** 快火~*********************************	0	绿色	常亮	模块建立通讯
数据线通道指示灯			熄灭	模块未建立通讯
D+5-14+2名; 若七二-17	1	但在	常亮	模块建立通讯
时钟线通道指示灯	I	绿色	熄灭	模块未建立通讯
检入系送地二 加	4~6 (左侧)	/a/a	常亮	通道有信号输入
输入通道指示灯		绿色	熄灭	通道无输入或信号输入异常
松山洛诺比二红	-UT 4 7 (+/ml)		常亮	通道有信 号 输出
输出通道指示灯 	4~7 (右侧)	绿色	熄灭	通道无输出或信号输出异常

5 安装和拆卸

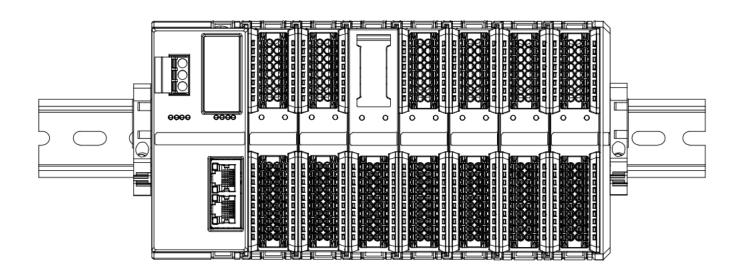
5.1 安装指南

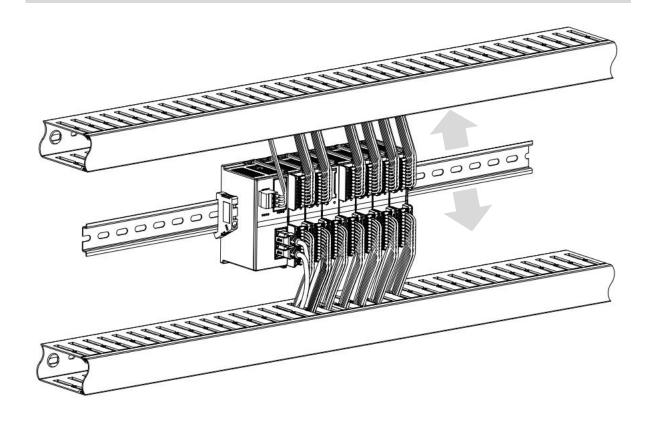

安装/拆卸注意事项

- 模块防护等级为 IP20, 模块需在机柜内安装, 室内使用。
- 确保机柜有良好的通风措施(如机柜加装排风扇)。
- 请勿将本设备安装在可能引起过热的设备旁边或者上方。
- 务必将模块竖直安装在固定导轨上,并保持周围空气流通 (模块上下至少有 50mm 的空气流通空间) 。
- 模块安装后, 务必在两端安装导轨固定件将模块固定。
- 安装/拆卸务必在切断电源的状态下进行。
- 模块安装后,建议按照上下走线的方式进行接线和布线。



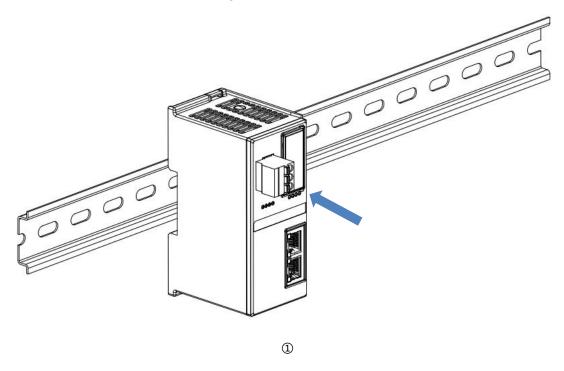
● 如果不按照产品用户手册进行使用,设备提供的保护可能会受到损害。


模块安装示意图,上下最小间隙 (≥50mm)

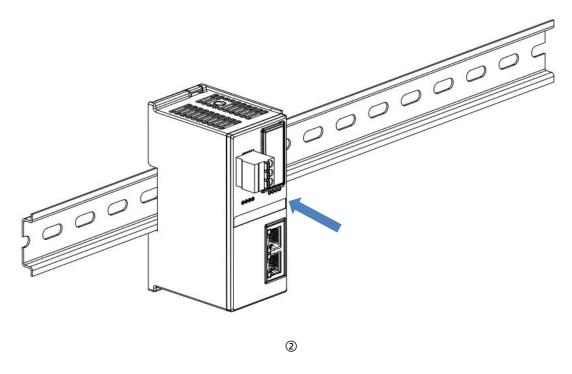

确保模块竖直安装于固定导轨

务必安装导轨固定件

模块上下布线示意图

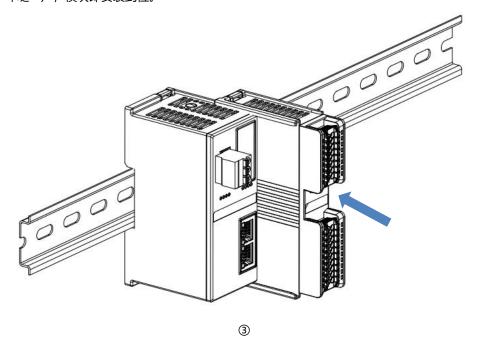

5.2 安装拆卸步骤

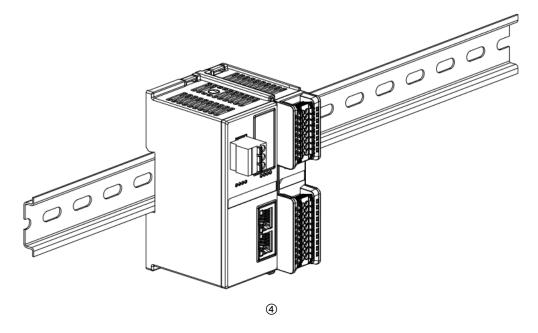
模块安装及拆卸	模块安装及拆卸				
	1、在已固定的导轨上先安装耦合器模块。				
+共十九十二十二四マ	2、在耦合器模块的右边依次安装所需要的 I/O 模块或功能模块。				
模块安装步骤 	3、安装所有需要的模块后,安装终端盖板,完成模块的组装。				
	4、在耦合器模块、终端盖板的两端安装导轨固定件,将模块固定。				
	1、松开模块两端的导轨固定件。				
模块拆卸步骤	2、用一字螺丝刀撬开模块卡扣。				
	3、拔出拆卸的模块。				

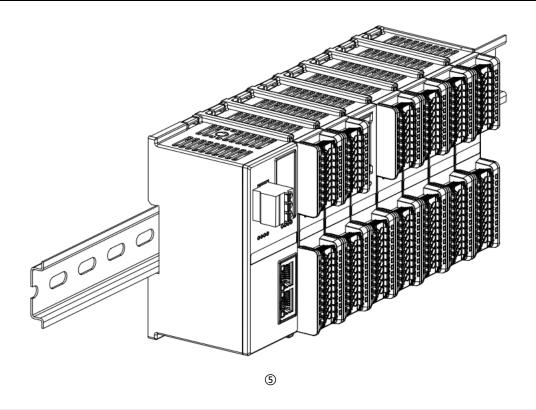

5.3 安装拆卸示意图

耦合器模块安装

■ 将耦合器模块垂直对准导轨卡槽,如下图①所示。

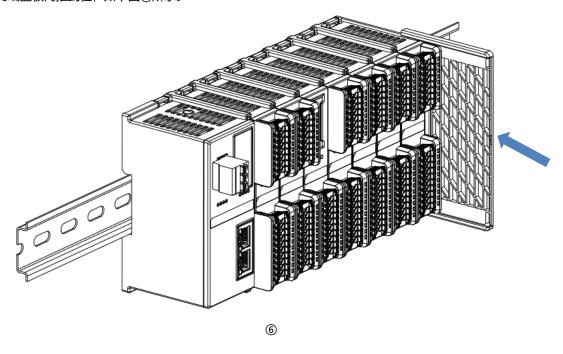


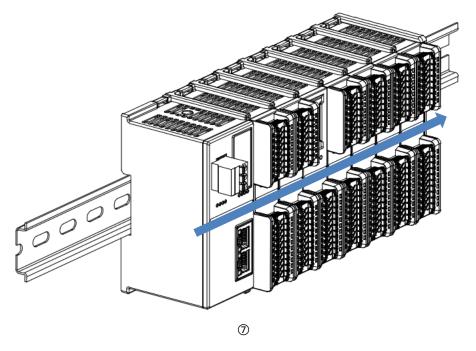

■ 用力向导轨方向压耦合器模块,听到"咔哒"声,模块即安装到位,如下图②所示。



I/O 模块安装

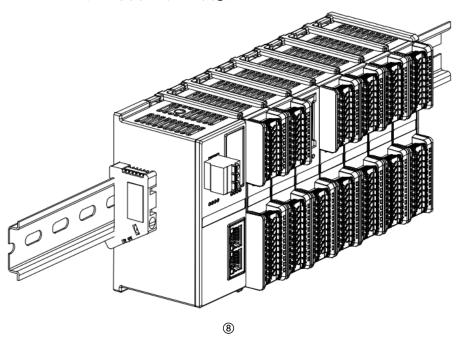
■ 按照上述安装耦合器模块的步骤,逐个安装所需要的 I/O 模块或功能模块,如下图③、图④和图⑤所示推入, 听到"咔哒"声,模块即安装到位。



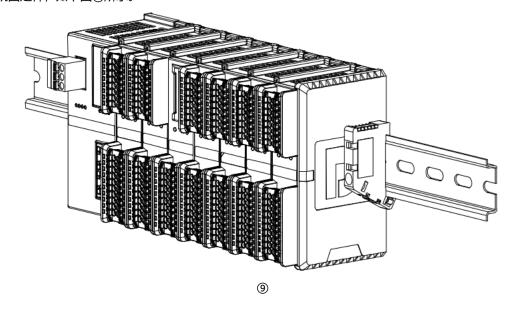


终端盖板安装

■ 在最后一个模块的右侧安装终端盖板,终端盖板凹槽一侧对准导轨,安装方式请参照 I/O 模块的安装方法,将终端盖板内推到位,如下图⑥所示。

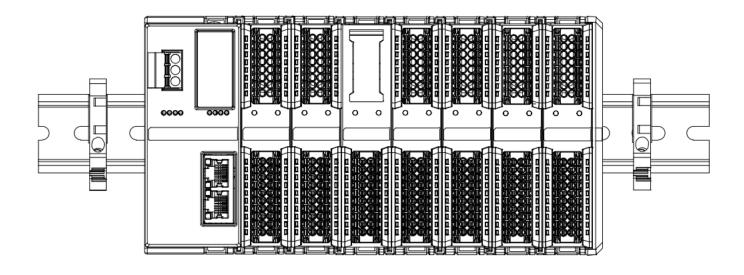


■ 终端盖板安装完成后,检查整个模组正面是否平整,确保所有模块和端盖都安装到位,正面平齐,如下图⑦所示。

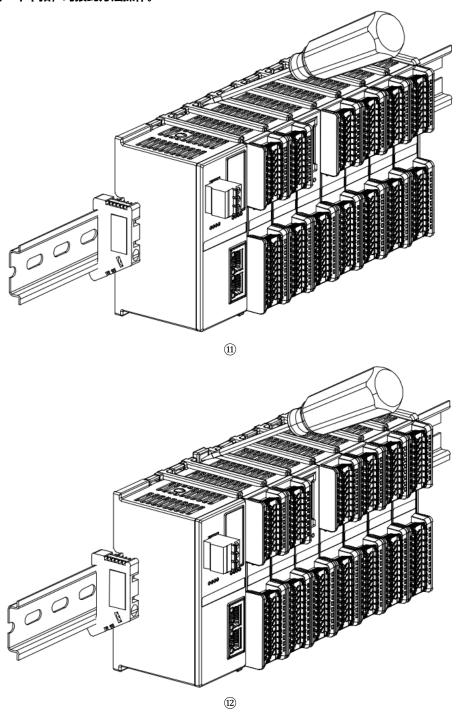


导轨固定件安装

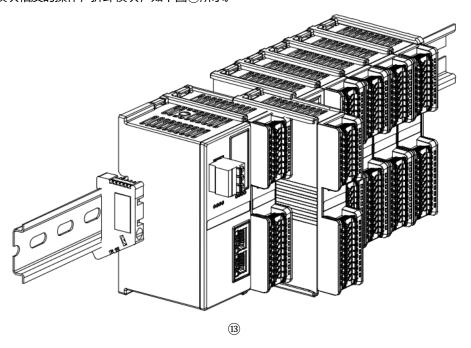
■ 紧贴耦合器左侧面安装并拧紧导轨固定件,如下图⑧所示。



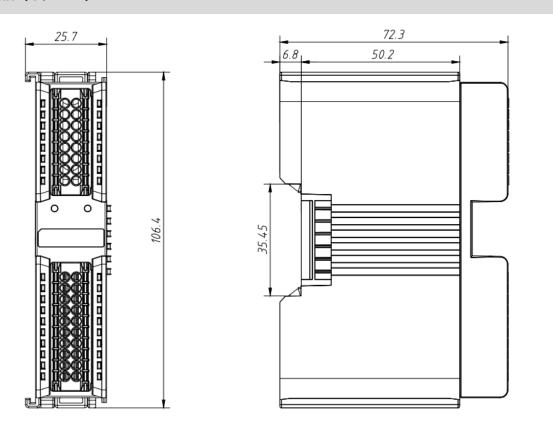
■ 在终端盖板右侧安装导轨固定件,先将导轨固定件向耦合器的方向用力推,确保模块安装紧固,并用螺丝刀锁紧导轨固定件,如下图⑨所示。


拆卸

■ 用螺丝刀松开模块一端导轨固定件,并向一侧移开,确保模块和导轨固定件之间有间隙,如下图⑩所示。

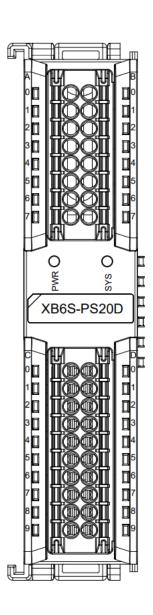


■ 将一字平头起插入待拆卸模块的卡扣,侧向模块的方向用力(听到响声),如下图⑪和⑫所示。**注:每个模块上下各有一个卡扣,均按此方法操作。**



■ 按安装模块相反的操作,拆卸模块,如下图⑬所示。

5.4 外形尺寸


外形规格 (单位 mm)

6 接线

6.1 接线图

- 为了人身及设备安全,建议在进行接线操作时断开供电电源。
- 24V 内部导通; 0V 内部导通。
- COM0 和 COM1 为输入通道的公共端; NPN/PNP 兼容。
- 负载公共端电源需与模块使用同一个电源。

6.2 接线端子定义

Encoder0								
	A		В					
端子标识	端子定义	说明	端子标识	端子定义	说明			
0	D+	编码器数据信号输入+	0	D-	编码器数据信号输入-			
1	C+	编码器时钟信号输出+	1	C-	编码器时钟信号输出-			
2	NC	空端子	2	NC	空端子			
3	EOV	24V 编码器电源	3	E0G	0V 编码器电源			
4	X00	DI 通道 0 (探针功能)	4	Y00	DO 通道 0			
5	X01	DI 通道 1 (探针功能)	5	Y01	DO 通道 1			
6	X02	DI 通道 2	6	Y02	DO 通道 2			
7	COM0	输入通道公共端	7	Y03	DO 通道 3			
	Encoder1							
	С			D				
端子标识	端子定义	说明	端子标识	端子定义	说明			
0	D+	(7,0 10			
	DŦ	编码器数据信号输入+	0	D-	编码器数据信号输入-			
1	C+	编码器数据信号输入+编码器时钟信号输出+	0	D- C-				
2				<u> </u>	编码器数据信号输入-			
	C+	编码器时钟信号输出+	1	C-	编码器数据信号输入- 编码器时钟信号输出-			
2	C+ NC	编码器时钟信号输出+ 空端子	1 2	C- NC	编码器数据信号输入- 编码器时钟信号输出- 空端子			
2	C+ NC E1V	编码器时钟信号输出+ 空端子 24V 编码器电源	1 2 3	C- NC E1G	编码器数据信号输入- 编码器时钟信号输出- 空端子 0V编码器电源			
2 3 4	C+ NC E1V X10	编码器时钟信号输出+空端子 24V 编码器电源 DI 通道 0 (探针功能)	1 2 3 4	C- NC E1G Y10	编码器数据信号输入- 编码器时钟信号输出- 空端子 0V 编码器电源 DO 通道 0			
2 3 4 5	C+ NC E1V X10 X11	编码器时钟信号输出+空端子 24V编码器电源 DI通道 0 (探针功能) DI通道 1 (探针功能)	1 2 3 4 5	C- NC E1G Y10 Y11	编码器数据信号输入-编码器时钟信号输出-空端子 OV 编码器电源 DO 通道 0 DO 通道 1			
2 3 4 5 6	C+ NC E1V X10 X11	编码器时钟信号输出+ 空端子 24V 编码器电源 DI 通道 0 (探针功能) DI 通道 1 (探针功能) DI 通道 2	1 2 3 4 5	C- NC E1G Y10 Y11 Y12	编码器数据信号输入- 编码器时钟信号输出- 空端子 OV 编码器电源 DO 通道 0 DO 通道 1 DO 通道 2			

7 使用

7.1 过程数据

7.1.1 上行数据

上行数据 26 字节(每个编码器 13 字节,编码器[n]取值 0~1)						
名称	含义	取值范围	数据类型	长度		
E[n] Input CHO (Latch)	编码器探针输入信号	0: 无信号输入	bool	1 位		
E[n] Input CH0 (Latch)	通道 0	1: 有信 号 输入	DOOI	1 <u>11/</u>		
E[n] Input CH1 (Latch)	编码器探针输入信号	0: 无信号输入	bool	1位		
E[II] IIIPUL CHT (Latch)	通道 1	1: 有信 号 输入	DOOI			
E[n] Input CH2	编码器普通输入信号	0: 无信号输入	bool	1位		
E[ii] iliput CH2	通道 2	1: 有信 号 输入	DOOI			
E[n] Latched Flag CH0	编码器探针输入通道	0: 1->0 锁存一次,翻转一次	bool	1 / 		
E[II] Lateried Flag CHO	0 锁存完成标志位	1: 0->1 锁存一次,翻转一次	DOOI	1位		
E[n] Latched Flag CH1	编码器探针输入通道	0: 1->0 锁存一次,翻转一次	bool	1位		
E[II] Lateried Flag CHT	1 锁存完成标志位	1: 0->1 锁存一次,翻转一次	DOOI	1 1 <u>1/1</u>		
E[n] Count Value	编码器计数值	0~2^32-1	unsigned32	4 字节		
Fini Latch Value CUO	编码器探针输入通道	0~2^32-1	uncianod22	4 字节		
E[n] Latch Value CH0	0 锁存值	U~Z^`3Z-1	unsigned32	4子7		
E[n] Latch Value CH1	编码器探针输入通道 1 锁存值	0~2^32-1	unsigned32	4 字节		

上行数据说明:

◆ 编码器探针输入信号通道 E[n] Input CH0/CH1 (Latch)

每路编码器配 2 路探针输入通道,表明对应的探针输入通道输入信号的有无。 探针输入通道锁存功能未开启时,可作为普通数字量输入通道使用。

◆ 编码器普通输入信号通道 E[n] Input CH2

每路编码器配 1 路普通数字量输入通道, 表明对应的 DI 通道输入信号的有无。

◆ 编码器探针输入通道锁存完成标志位 E[n] Latched Flag CH0/CH1

1 路编码器配 2 路探针输入通道,探针输入通道完成一次锁存后,标志位将发生 0->1 或 1->0 的翻转。例 1:编码器 0 探针输入通道 1 锁存完成标志位为 0,完成一次锁存后,标志位变为 1,再完成一次锁存后,标志位变为 0。

◆ 编码器计数值 E[n] Count Value

编码器计数值为对应编码器当前的计数值大小,数值范围为 $0\sim2^32-1$ 。实际某个编码器的计数范围由编码器的 LSB 位置和 MSB 位置决定,编码器的计数范围为 $0\sim2^{MSB-LSB+1}-1$ 。

◆ 编码器探针输入通道锁存值 E[n] Latch Value CH0/CH1

每路编码器配备 2 路探针输入通道,通过对探针输入通道输入满足设定条件的信号,可以快速锁存对应编码器当前的计数值,数值范围为 0~2^32-1。实际某个编码器的计数范围由编码器的 LSB 位置和 MSB 位置决定,编码器的计数范围为 0~2^{MSB-LSB+1}-1;锁存值的数值范围与计数值一样,也是 0~2^{MSB-LSB+1}-1。

7.1.2 下行数据

下行数据 2 字节(每个编码器 1 字节,编码器[n]取值 0~1)							
名称	含义	取值范围	数据类型	长度			
E[n] Output CH0	编码器输出通道 0	0:輸出高电平 24V	bool	1 位			
L[II] Output CITO	洲	1:输出低电平 0V	DOOI	1 1 <u>17</u>			
E[n] Output CH1	 	0:輸出高电平 24V	bool	1 位			
E[ii] Output CH1	编的	1: 输出低电平 0V		1 71/1/1			
E[n] Output CU2	编码器输出通道 2	0:輸出高电平 24V	bool	1 位			
E[n] Output CH2		1:输出低电平 0V		1 1 <u>177</u>			
Finl Output CU2	护 切 职 检 山 泽 文	0:输出高电平 24V	bool	1 / \`			
E[n] Output CH3	編码器輸出通道 3	1: 输出低电平 0V	DOOL	1位			
Fini Latch CUO Fnable	编码器探针输入通道	0: 失能	bool	1 / \\			
E[n] Latch CH0 Enable	0 锁存使能	1: 使能	DOOI	1位			
Finil atch CU1 Fnable	编码器探针输入通道	0: 失能	haal	1 / \\			
E[n] Latch CH1 Enable	1 锁存使能	1: 使能	bool	1位			

下行数据说明:

- ◆ **编码器输出通道 (普通输出) E[n] Output CH0/CH1/CH2/CH3** 数字量通道输出 (NPN 型输出) : 置 "0" 则输出高电平 24V, 置 "1" 则输出低电平 0V。
- ◆ 编码器探针输入通道锁存使能 E[n] Latch CH0/CH1 Enable 编码器输入锁存通道使能标志位设置为 1 则锁存功能使能,设置为 0 则锁存功能失能。

7.2 配置参数定义

模块配置一共有 16 个参数,两路编码器各有 8 个配置参数,独立配置。以编码器 0 为例介绍配置参数,如下表所示。

功能	参数名	取值范围	默认值	
编码器 SSI 帧长度	E0 Frame Length	10~40	13	
		0: 2MHz		
		1: 1.5MHz		
编码器读取数据时的时钟频	FO Clark For more	2: 1MHz	0	
率	E0 Clock Frequency	3: 500KHz		
		4: 250KHz		
		5: 125KHz		
编码器间隔时间	E0 Interval Time	1~50000 (单位: 100us)	1	
	FO Francisco Tomas	0: Binary (二进制码)	1	
编码器编码方式	E0 Encoder Type	1: Gray (格雷码)	1	
编码器位置值的 LSB 位号	E0 LSB Position	0~39	0	
编码器位置值的 MSB 位号	E0 MSB Position	1~40	12	
		0: CH0 Single, CH1 Single		
		通道0单次、通道1单次		
		1: CH0 Repeat, CH1 Single		
/白兀思 0 t公4.1+共一 1	E0 Latch Mode	通道0重复、通道1单次	0	
编码器 0 探针模式	EU Laten Mode	2: CH0 Single, CH1 Repeat	0	
		通道0单次、通道1重复		
		3: CH0 Repeat, CH1 Repeat		
		通道0重复、通道1重复		
		0: CH0 Raising, CH1 Raising		
		通道 0 上升沿、通道 1 上升沿		
		1: CH0 Falling, CH1 Raising		
 編码器 0 探针触发边沿	E0 Latch Edge	通道0下降沿、通道1上升沿	0	
姍汨窃∪抓比账及炒河	EU LAICH EUGE	2: CH0 Raising, CH1 Falling		
		通道0上升沿、通道1下降沿		
		3: CH0 Falling, CH1 Falling		
		通道0下降沿、通道1下降沿		

参数说明:

编码器 SSI 帧长度 Frame Length

位置值的 LSB 位号 LSB Position

位置值的 MSB 位号 MSB Position

帧长度参数,结合位置号 LSB 和 MSB 参数可以设置编码器计数的分辨率和总计数值,分辨率即编码器每转一圈增加的数值。

读取数据时的时钟频率 Clock Frequency

时钟频率默认取值为 0, 即 2MHz。

间隔时间 Interval Time

默认取值为 1, 即 100us,可设置范围 1~50000 (100us)。

编码器编码方式 Encoder Type

默认取值为 1,即使能格雷码转换。设置为 0则禁止格雷码转换,使用二进制码。

探针功能参数包括**探针模式 Latch Mode** 和**探针触发边沿 Latch Edge** 两项参数。每路编码器配备 2 路探针输入通道,通过对探针输入通道输入对应信号,可以锁存对应编码器的计数值。

探针模式: 探针模式参数可配置编码器每个探针功能通道为单次/连续模式。

探针功能通道配置为单次模式,则探针功能使能后,通道输入满足设定条件的信号时,可锁存一次计数值;后续再次输入满足设定条件的信号时,不再进行锁存,除非重新使能该探针功能通道。

探针功能通道配置为连续模式,则探针功能使能后,每次通道输入满足设定条件的信号,均可锁存一次计数值,即可多次锁存计数值。

探针触发边沿: 通过探针触发边沿参数可配置编码器每个探针功能通道为上升沿/下降沿触发。每路编码器的两个探针功能通道锁存触发信号可单独配置,锁存数值可以单独显示。

探针输入通道通过 COM 端兼容 PNP/NPN 信号。当 COM 端接入 0V 时,输入信号为 PNP 型,输入高电平 24V 信号有效,输入低电平 0V 信号无效;当 COM 端接入 24V 时,输入信号为 NPN 型,输入低电平 0V 信号有效,输入高电平 24V 信号无效。

上升沿触发表示探针输入通道从无效信号到有效信号触发,下降沿触发表示从有效信号到无效信号触发。

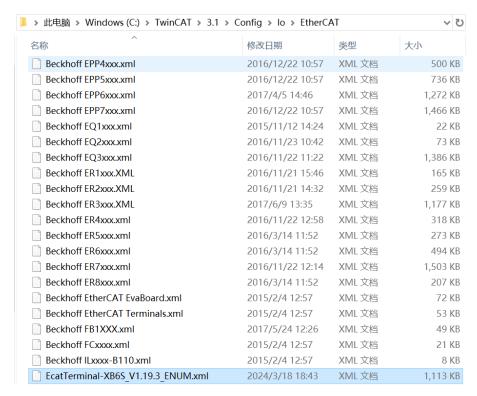
7.3 模块组态说明

7.3.1 在 TwinCAT3 软件环境下的应用

1、准备工作

● 硬件环境

- ▶ 模块型号 XB6S-PS20D
- EtherCAT 耦合器,端盖本说明以 XB6S-EC2002 耦合器为例
- > 计算机一台, 预装 TwinCAT3 软件
- > EtherCAT 专用屏蔽电缆
- 手轮/编码器/正交脉冲发生器等设备
- ➢ 开关电源一台
- 模块安装导轨及导轨固定件
- > 设备配置文件

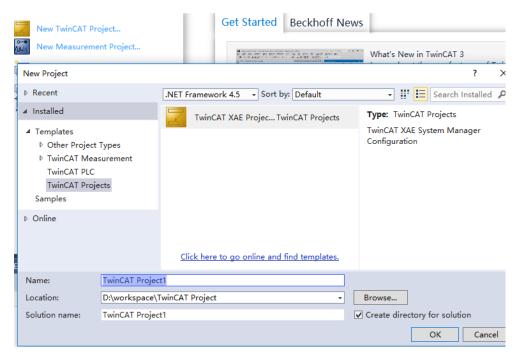

配置文件获取地址: https://www.solidotech.com/cn/resources/configuration-files

● 硬件组态及接线

请按照"5 安装和拆卸""6 接线"要求操作

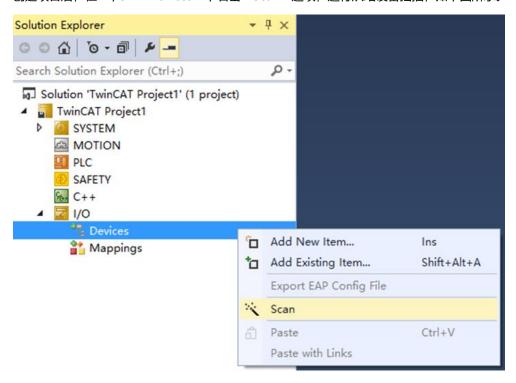
2、预置配置文件

将 ESI 配置文件(EcatTerminal-XB6S_V1.19.3_ENUM.xml)放置于 TwinCAT 的安装目录 "C:\TwinCAT\3.1\Config\Io\EtherCAT"下,如下图所示。



3、创建工程

a. 单击桌面右下角的 TwinCAT 图标,选择"TwinCAT XAE (VS xxxx)",打开 TwinCAT 软件,如下图所示。

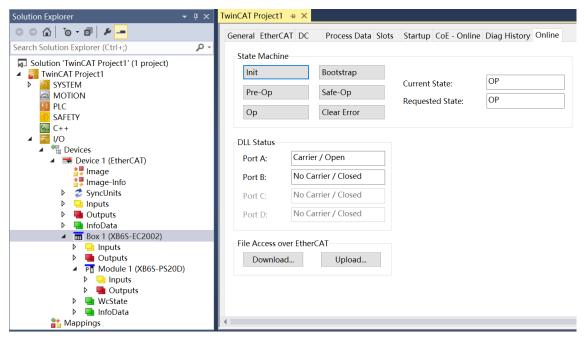


b. 单击 "New TwinCAT Project" ,在弹窗内 "Name" 和 "Solution name" 分别对应项目名称和解决方案名称, "Location" 对应项目路径,此三项可选择默认,然后单击 "OK" ,项目创建成功,如下图所示。

4、扫描设备

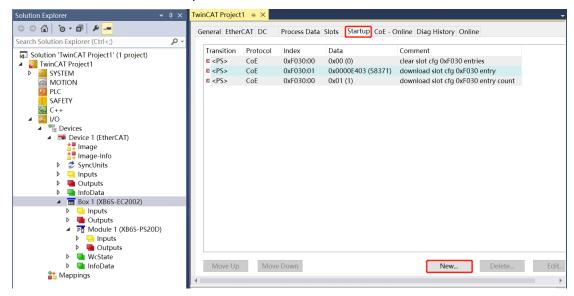
a. 创建项目后,在"I/O-> Devices"下右击"Scan"选项,进行从站设备扫描,如下图所示。

b. 勾选"本地连接"网卡,如下图所示。

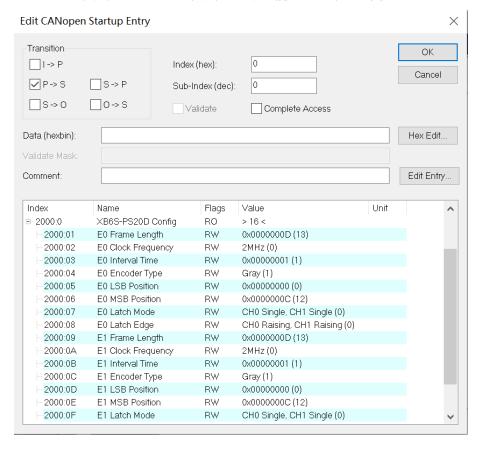

c. 弹窗 "Scan for boxes" ,单击选择 "是" ; 弹窗 "Activate Free Run" 单击选择 "是" ,如下图所示。

Microsoft Visual Studio

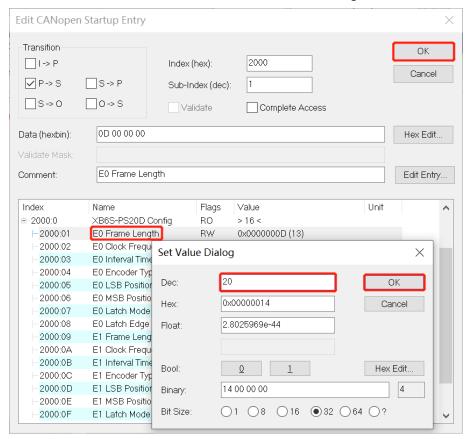
Microsoft Visual Studio

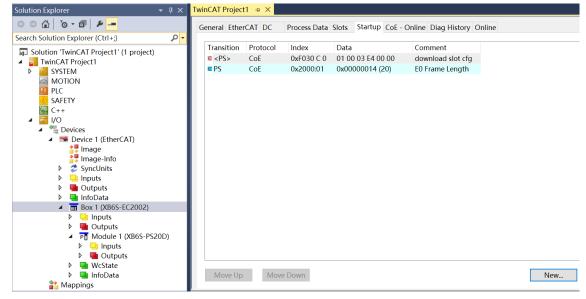


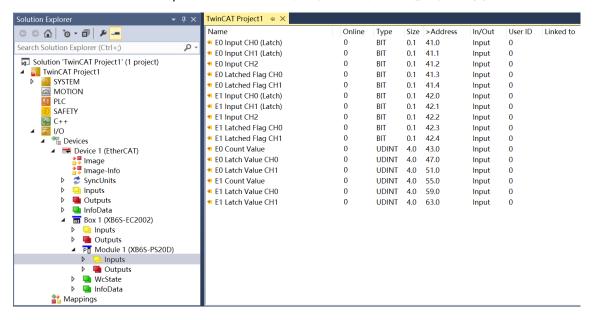
d. 扫描到设备后,左侧导航树可以看到 Box1 (XB6S-EC2002) 和 Module 1 (XB6S-PS20D) ,在 "Online"处可以看到 TwinCAT 在"OP"状态,可以观察到从站设备 RUN 灯常亮,如下图所示。

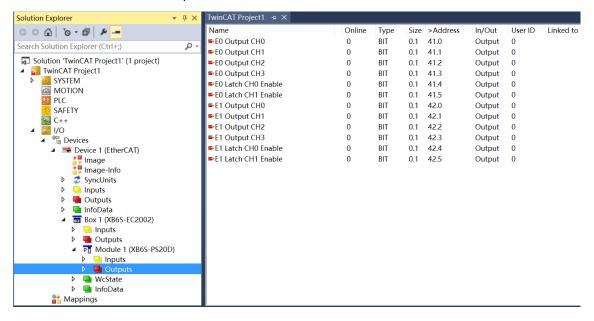


5、验证基本功能

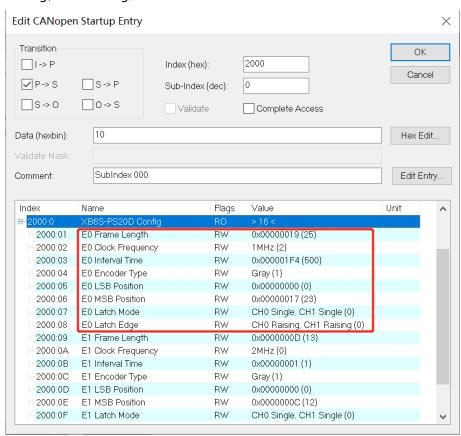

a. 单击左侧导航树 "Box1 -> Startup -> New" 可以进入配置参数编辑页面,如下图所示。


b. 在 Edit CANopen Startup Entry 弹窗中,单击 Index 2000:0 前面的"+",展开配置参数菜单,可以看到 16 个配置参数,点击任意一个参数,可以设置相关的配置,如下图所示。

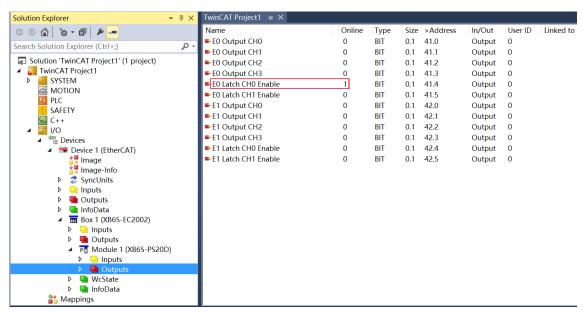

c. 例如修改编码器 0 的 SSI 帧长度参数,可以双击"EO Frame Length",修改参数值,如下图所示。


d. 参数修改完成后,可在 Startup 下方看到修改后的参数项和参数值,如下图所示。参数设置完成后,需进行 Reload 操作及模块重新上电,实现主站自动下发参数设定。

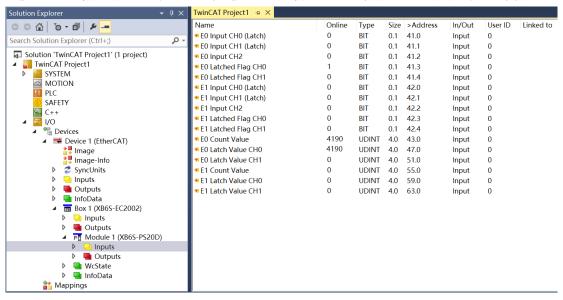
e. 左侧导航树"Module 1 -> Inputs"显示模块的上行数据,用于监视模块的输入,如下图所示。



f. 左侧导航树 "Module 1 -> Outputs" 显示模块的下行数据,用于控制模块的输出,如下图所示。


模块功能实例

- ◆ 编码器 0 接入,转动编码器计数,编码器 0 探针输入通道 0 进行锁存
 - a. 对配置参数进行配置,如下图所示。**注意:应用过程中,配置参数需根据编码器的参数进行设置。**
 - a) 编码器 0 SSI 帧长度设置为 25, 即 E0 Frame Length 设置为 25;
 - b) 编码器 0 读取数据时的时钟频率设置为 1MHz,即 E0 Clock Frequency 设置为 2:1MHz;
 - c) 编码器 0 间隔时间设置为 50ms,即 E0 Interval Time 设置为 500;
 - d) 编码器 0 编码方式设置为格雷码,即 EO Encoder Type 设置为 1: Gray;
 - e) 编码器 0 位置值的 LSB 位号设置为 0,即 E0 LSB Position 设置为 0;
 - f) 编码器 0 位置值的 MSB 位号设置为 23, 即 E0 MSB Position 设置为 23;
 - g) 编码器 0 探针模式设置为通道 0 单次、通道 1 单次,即 E0 Latch Mode 设置为 0: CH0 Single, CH1 Single;
 - h) 编码器 0 探针触发边沿设置为通道 0 上升沿、通道 1 上升沿,即 E0 Latch Edge 设置为 0: CH0 Raising, CH1 Raising。



参数设置完成后,需进行 Reload 操作及模块重新上电,实现主站自动下发参数设定。

- b. 设置编码器 0 探针输入通道 0 锁存使能,如下图所示。
 - a) 下行数据 E0 Latch CH0 Enable 设置为 1。

c. 编码器 0 开始转动,计数完成后,编码器 0 探针输入通道 0 输入有效信号,编码器 0 计数值为 4190,探针输入通道 0 锁存值为 4190,编码器探针输入通道 0 锁存完成标志位数值翻转一次为 1,如下图所示。

7.3.2 在 Sysmac Studio 软件环境下的应用

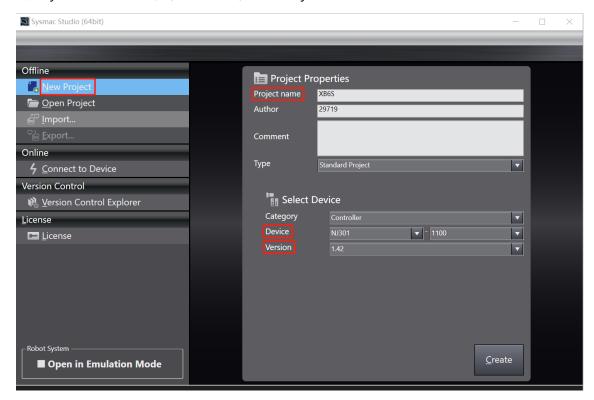
1、准备工作

● 硬件环境

- ▶ 模块型号 XB6S-PS20D
- EtherCAT 耦合器, 端盖本说明以 XB6S-EC2002 耦合器为例
- ➢ 计算机一台, 预装 Sysmac Studio 软件
- > 欧姆龙 PLC 一台,本说明以型号 NJ301-1100 为例
- > EtherCAT 专用屏蔽电缆
- > 手轮/编码器/正交脉冲发生器等设备
- > 开关电源一台
- > 设备配置文件

配置文件获取地址: https://www.solidotech.com/cn/resources/configuration-files

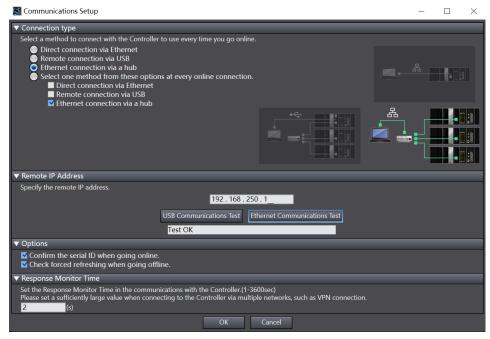
● 硬件组态及接线


请按照"5安装和拆卸"和"6接线"要求操作

● 计算机 IP 要求

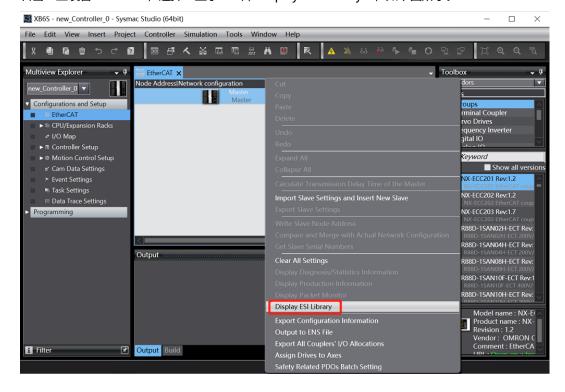
设置电脑的 IP 地址和 PLC 的 IP 地址,确保其在同一网段。

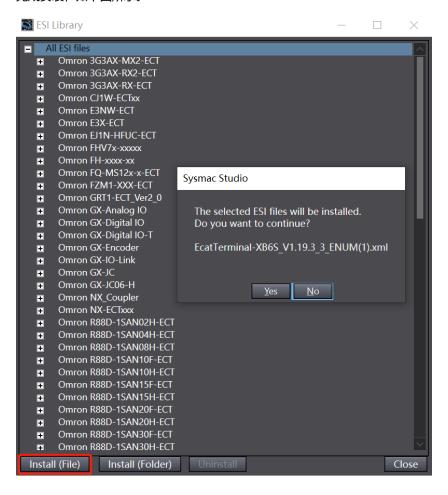
2、新建工程


a. 打开 Sysmac Studio 软件, 单击"新建工程 New Project"。

• 工程名称: 自定义。

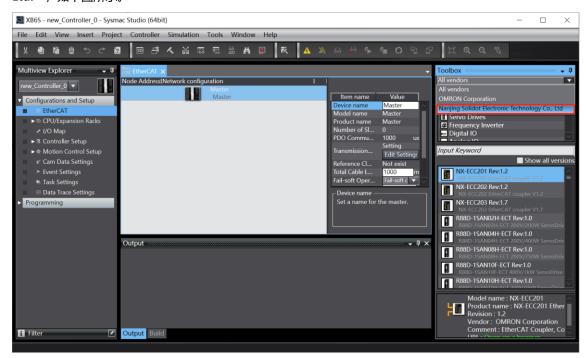
• 选择设备: "设备"选择对应的 PLC 型号, "版本"选择 PLC 对应的版本号。

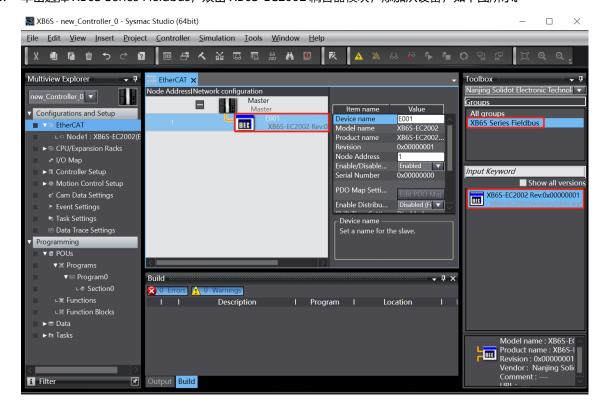

- b. 工程属性输入完成后,单击"创建 Create"。
- c. 单击菜单栏 "控制器 Controller -> 通信设置 Communications Setup" ,选择在线时每次与控制器连接时使用的方法,输入"远程 IP 地址 Remote IP Address",如下图所示。


d. 单击 "Ethernet 通信测试",系统显示测试成功。

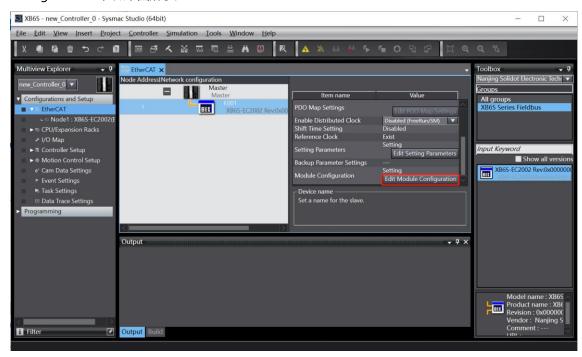
3、安装 XML 文件

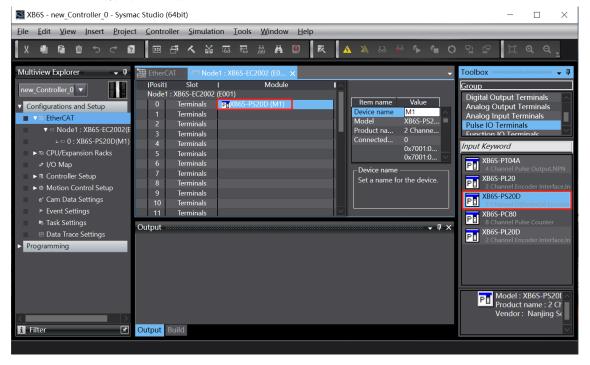
- a. 在左侧导航树展开"配置和设置 Configurations and Setup",双击"EtherCAT"。
- b. 右击"主设备 Master",选择"显示 ESI 库 Display ESI Library",如下图所示。


c. 在弹出的 "ESI 库" 窗口中单击 "安装(文件)Install(File)", 选择模块的 XML 文件路径, 单击 "是 Yes" 完成安装, 如下图所示。

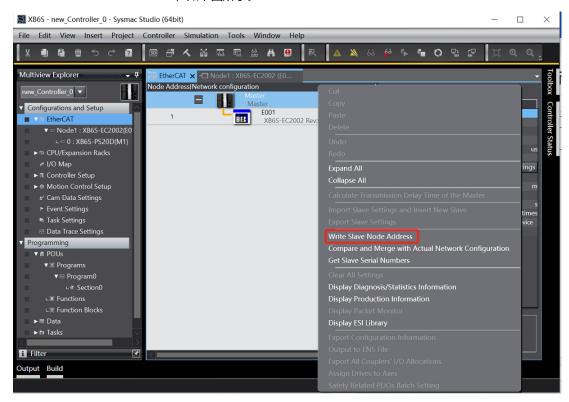

4、添加设备

添加设备有在线扫描和离线添加两种方式,本说明以离线添加为例进行介绍。

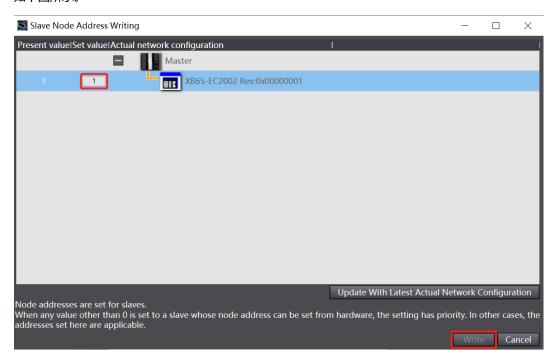

a. 在右侧 "工具箱" 栏下,单击展开全部供应商,选择 "Nanjing Solidot Electronic Technology Co., Ltd." ,如下图所示。


b. 单击选择 XB6S Series Fieldbus,双击 XB6S-EC2002 耦合器模块,添加从设备,如下图所示。

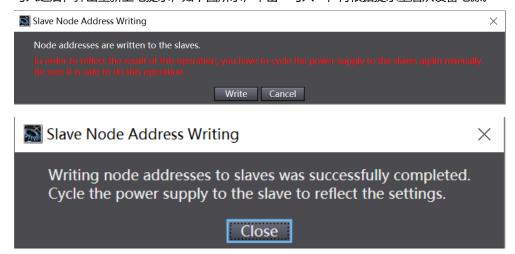
c. 在 EtherCAT 主页面,选中刚添加的 XB6S-EC2002 耦合器模块,选择"编辑模块配置 Edit Module Configuration",如下图所示。



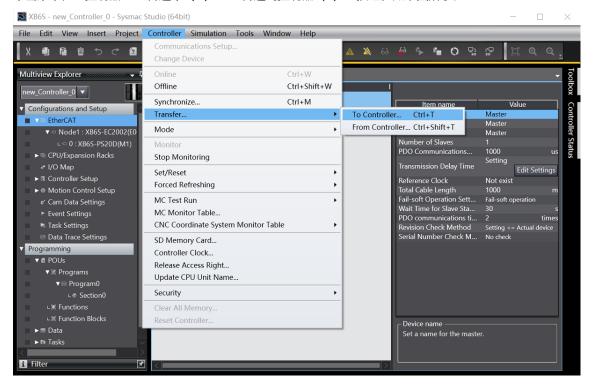
d. 光标定位到"模块 Module"中,在右侧工具箱模块列表中单击模块,按 I/O 模块组态的顺序,逐个添加 I/O 模块。注意:顺序及型号必须与物理拓扑一致!



5、设置节点地址


a. 单击菜单栏"控制器->在线",将控制器转至在线状态。右击主设备,单击选择"写入从设备节点地址Write Slave Node Address",如下图所示。

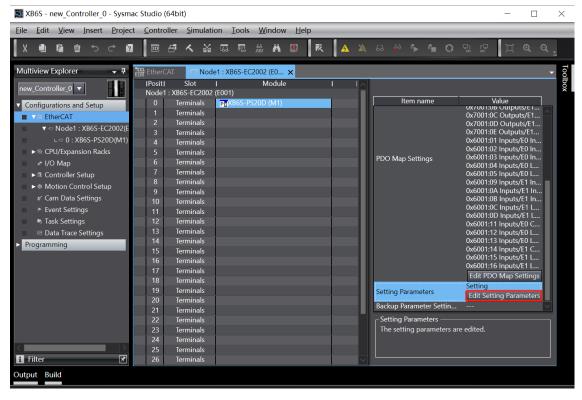
b. 在设置节点地址的窗口中,单击设置值下的数值,输入节点地址,单击"写入",更改从设备节点地址, 如下图所示。



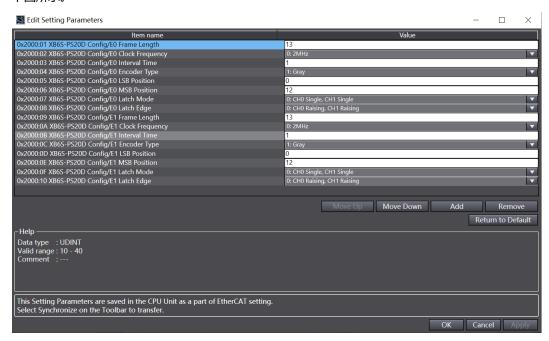
c. 写入之后,弹出重新上电提示,如下图所示,单击"写入",再根据提示重启从设备电源。

6、将组态下载到 PLC

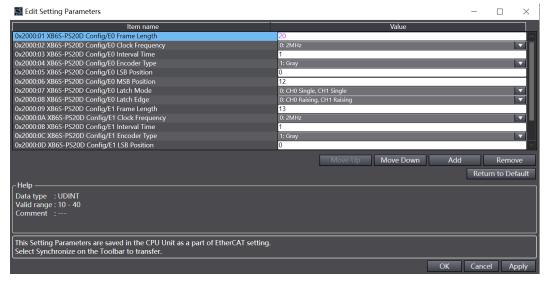
a. 单击菜单栏"控制器->传送中(A)->传送到控制器(T)"按钮,如下图所示。



b. 将组态下载到 PLC, 弹出传送确认弹窗, 单击"执行", 后续弹窗依次单击"是/确定", 如下图所示, 下载完成后, 需要重新上电。


7、参数设置

a. 将组态切换到离线状态,在节点 1 编辑模块配置页面,选择 XB6S-PS20D 模块,单击"编辑初始化参数设置 Edit Setting Parameters",如下图所示。



注:若 PLC 固件版本过低,需要用 EC_CoESDOWrite、EC_CoESDORead 指令进行 SDO 地址的写入和读取。

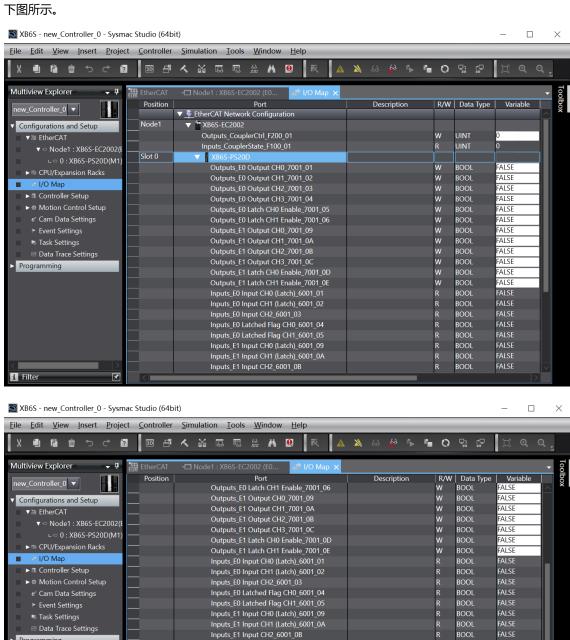
b. 在 XB6S-PS20D 参数设置页面,可以看到 16 个配置参数,点击任意一个参数,可以设置相关的配置,如下图所示。

c. 例如修改编码器 0 的 SSI 帧长度参数,可以双击"EO Frame Length",修改参数值,如下图所示。参数 全部配置完成后,需重新下载程序至 PLC 中,PLC 与模块需要重新上电。

BOOL

UDINT

UDINT


UDINT

UDINT

FALSE

8、I/O 功能

在左侧导航树中双击"I/O映射",可以看到拓扑中模块的映射表,从而对通道输入输出值进行监控,如

Inputs_E1 Latched Flag CH1_6001_0D

Inputs_E0 Latch Value CH0_6001_12

Inputs_E0 Latch Value CH1_6001_13

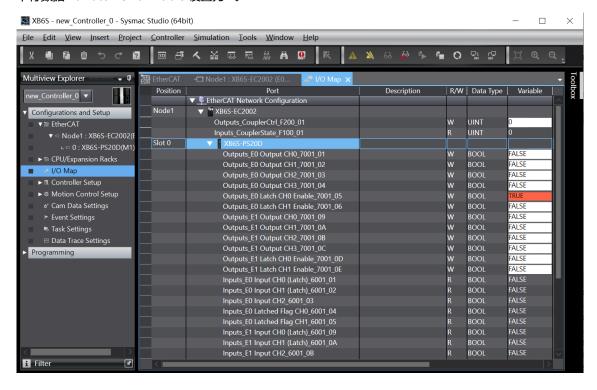
Inputs_E1 Count Value_6001_14

🔻 🏺 CPU/Expansion Racks

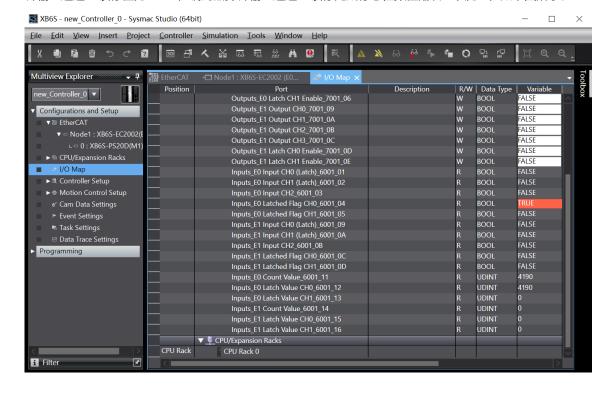
CPU Rack 0

CPU Rack

i Filter


模块功能实例

- ◆ 编码器 0 接入,转动编码器计数,编码器 0 探针输入通道 0 进行锁存
 - a. 对配置参数进行配置,如下图所示。**注意:应用过程中,配置参数需根据编码器的参数进行设置。**
 - a) 编码器 0 SSI 帧长度设置为 25, 即 E0 Frame Length 设置为 25;
 - b) 编码器 0 读取数据时的时钟频率设置为 1MHz,即 E0 Clock Frequency 设置为 2:1MHz;
 - c) 编码器 0 间隔时间设置为 50ms,即 E0 Interval Time 设置为 500;
 - d) 编码器 0 编码方式设置为格雷码,即 EO Encoder Type 设置为 1: Gray;
 - e) 编码器 0 位置值的 LSB 位号设置为 0,即 E0 LSB Position 设置为 0;
 - f) 编码器 0 位置值的 MSB 位号设置为 23, 即 E0 MSB Position 设置为 23;
 - g) 编码器 0 探针模式设置为通道 0 单次、通道 1 单次,即 E0 Latch Mode 设置为 0: CH0 Single, CH1 Single;
 - h) 编码器 0 探针触发边沿设置为通道 0 上升沿、通道 1 上升沿,即 E0 Latch Edge 设置为 0: CH0 Raising,CH1 Raising。



参数设置完成后,需进行 Reload 操作及模块重新上电,实现主站自动下发参数设定。

- b. 设置编码器 0 探针输入通道 0 锁存使能,如下图所示。
 - a) 下行数据 E0 Latch CH0 Enable 设置为 1。

c. 编码器 0 开始转动,计数完成后,编码器 0 探针输入通道 0 输入有效信号,编码器 0 计数值为 4190,探针输入通道 0 锁存值为 4190,编码器探针输入通道 0 锁存完成标志位数值翻转一次为 1,如下图所示。

