

XB6-A20SG 应变采集模块

用户手册

南京实点电子科技有限公司

版权所有 © 南京实点电子科技有限公司 2024。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

spot 和其它实点商标均为南京实点电子科技有限公司的商标。

本文档提及的其它所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受实点公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,实点公司对本文档内容不做任何明示或默示的声明或保证。由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

南京实点电子科技有限公司

地址: 江苏省南京市江宁区胜利路 91 号昂鹰大厦 11 楼

邮编: 211106

电话: 4007788929

网址: http://www.solidotech.com

目 录

1	产品概	琺	1
	1.1	产品简介	1
	1.2	产品特性	1
2	产品参	数	
	2.1	通用参数	
3	面板		
	3.1	模块结构	2
	3.2	指示灯功能	
4	安装和]拆卸	6
	4.1	外形尺寸	6
	4.2	安装指南	6
	4.3	安装拆卸步骤	8
	4.4	安装示意图	8
5	接线		12
	5.1	接线图	12
	5.2	接线端子定义	13
6	使用		14
	6.1	参数设置及功能	14
	6.1.1	桥路连接方式选择	15
	6.1.2	电压选择	15
	6.1.3	输入滤波	15
	6.1.4	模式切换	15
	6.2	上下行过程数据及功能	17
	6.2.1	上行数据	17
	6.2.2	下行数据	17
	6.3	模块组态说明	18
	6.3.1	在 TwinCAT3 软件环境下的应用	18

1 产品概述

1.1 产品简介

XB6-A20SG 为插片式应变采集模块,支持应变式传感器。采用 X-bus 底部总线,适配本司 XB6 系列耦合器模块,模块支持供桥电压切换、桥路连接方式选择等功能。

1.2 产品特性

- 断连检测 每一个通道均支持断连检测。
- 量程模式 可设置标准量程、拓展量程两种模式。
- 供桥电压支持选择供桥电压。
- 桥路连接方式支持选择桥路连接方式。
- 体积小结构紧凑,占用空间小。
- 易安装
 DIN 35 mm 标准导轨安装
 采用弹片式接线端子,配线方便快捷。
- 易诊断 创新的通道指示灯设计,紧贴通道,一目了然,检测、维护方便。
- 易组态组态配置简单。

2 产品参数

2.1 通用参数

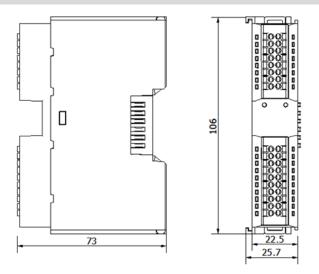
接口参数	
产品型号	XB6-A20SG
总线协议	X-bus
过程数据量: 上行	12 Bytes
过程数据量:下行	4 Bytes
站类型	从站
电源	5 VDC,通过 X-bus 总线供电
通用参数	
规格尺寸	106×73×25.7 mm
重量	120 g
工作温度	-10°C~+60°C
存储温度	-20℃~+75℃
相对湿度	95%, 无冷凝
防护等级	IP20

技术参数	
通道数	2
传感器类型	全桥 4 线制/6 线制传感器、半桥 3 线制/5 线制传感器
连接方式	全桥 4 线制/6 线制、半桥 3 线制/5 线制
供桥电压	2V /2.5V /3V /3.5V /4V /4.5V /5V
转换速度	5ms
输出速度	1ms
输入量程	全桥: ±32mV/V
	半桥: ±16mV/V
量程模式	标准量程模式、拓展量程模式
输入滤波	可配置
断连检测	支持
精度要求	0.4‰
通道禁用	支持
通道独立	支持
零点补偿	半桥零点补偿 (16 位补偿)
通道指示灯	绿色 LED 灯
上下溢功能	支持

3 面板

3.1 模块结构

产品各部位名称

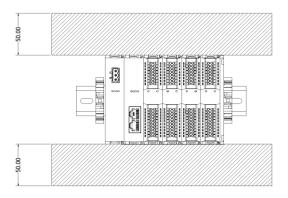

3.2 指示灯功能

标识	颜色	状态	描述
Р	绿色	常亮	电源供电正常
		熄灭	产品未上电或电源供电异常
R	绿色	常亮	系统运行正常
		闪烁 1 Hz	I/O 模块已连接,X-bus 系统准备交互
		熄灭	设备未上电、X-bus 未交互数据或异常
通道指示灯	绿色	常亮	通道使能且传感器正常接入
		闪烁	通道使能, 传感器未正常接入; 传感器输入信号超量程
		熄灭	通道禁止

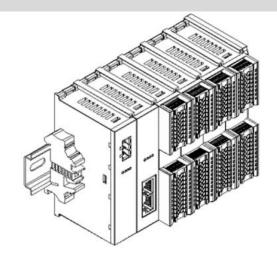
4 安装和拆卸

4.1 外形尺寸

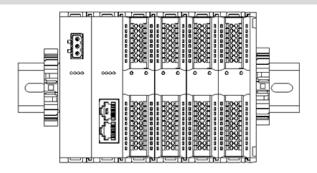
外形规格 (单位 mm)


4.2 安装指南

安装\拆卸注意事项

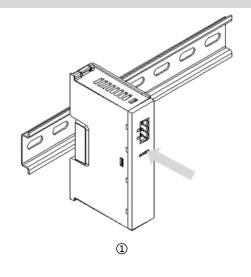

6

- 确保机柜有良好的通风措施(如机柜加装排风扇)。
- 请勿将本设备安装在可能引起过热的设备旁边或者上方。
- 务必将模块竖直安装,并保持周围空气流通(模块上下至少有 50mm 的空气流通空间)。
- 模块安装后,务必在两端安装导轨固定件将模块固定。
- 安装\拆卸务必在切断电源的状态下进行。
 - 版权所有 © 南京实点电子科技有限公司 2024

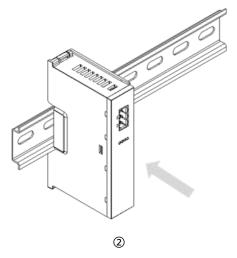

模块安装最小间隙 (≥50mm)

确保模块竖直安装

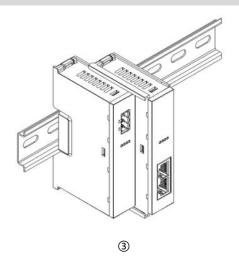
务必安装导轨固定件


4.3 安装拆卸步骤

模块安装及拆卸	
模块安装步骤	1、在已固定的导轨上先安装电源模块。
	2、在电源模块的右边依次安装耦合器及所需要的 I/O 模块。
	3、安装所有需要的 I/O 模块后,安装端盖,完成模块的组装。
	4、在电源模块、端盖的两端安装导轨固定件,将模块固定。
模块拆卸步骤	1、松开模块两端的导轨固定件。
	2、用一字螺丝刀撬开模块卡扣。
	3、拔出拆卸的模块。

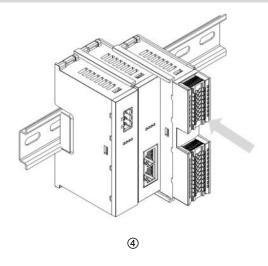

4.4 安装示意图

电源模块安装

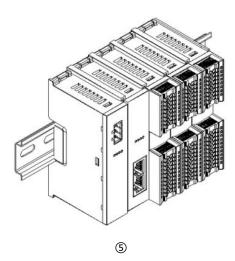


将电源模块导轨卡槽, 如左图①所示垂直对准 导轨。

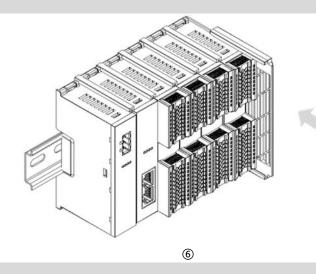
如左图②所示,用力压 电源模块,听到"咔 哒"声,模块即安装到 位。


耦合器模块安装

步骤

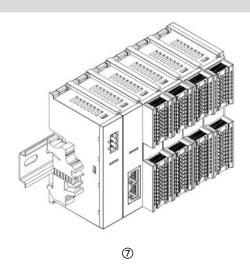

将耦合器模块左侧卡槽 对准电源模块右侧,如 左图③所示推入。 用力压耦合器模块,听 到"咔哒"声,模块即 安装到位。

I/O 模块安装

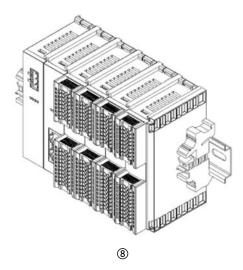


步骤

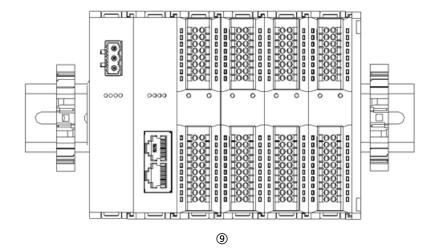
按照上一步安装耦合器模块的步骤,逐个安装所需要的 I/O 模块,如左图④和图⑤所示。


端盖加装

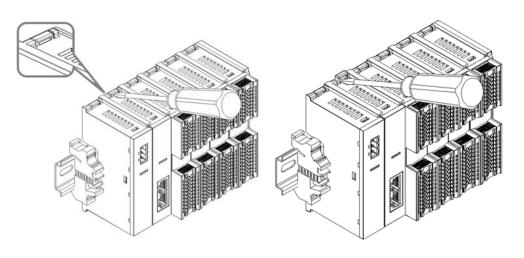
步骤


在最后一个模块的右侧 安装端盖,如左图⑥所 示,安装方式请参照耦 合器模块的安装方法。

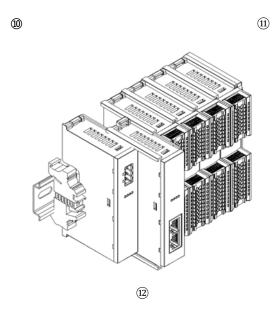
导轨固定件加装


步骤

紧贴耦合器左侧面安装 并锁紧导轨固定件,如 左图⑦所示。

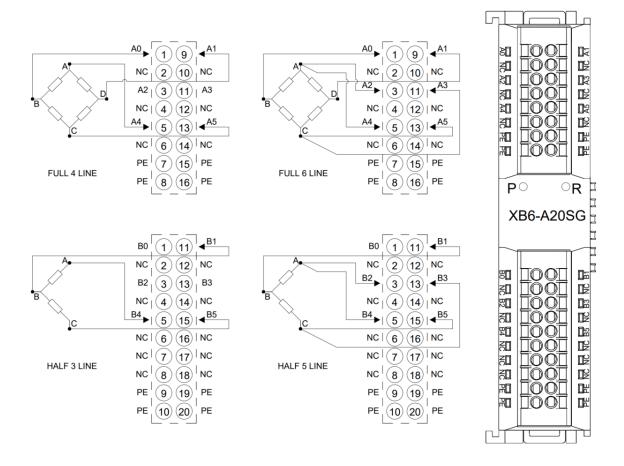

在端盖右侧安装导轨固定件, 先将导轨固定件 向耦合器的方向用力 推, 确保模块安装紧 固, 并用螺丝刀锁紧导 轨固定件, 如左图⑧所示。

拆卸


步骤

用螺丝刀松开模块一端 导轨固定件,并向一侧 移开,确保模块和导轨 固定件之间有间隙,如 左图⑨所示。

将一字平头起插入待拆卸模块的卡扣,侧向模块的方向用力(听到响声),如左图⑩和⑪所示。


注:每个模块上下各有 一个卡扣,均按此方法 操作。

按安装模块相反的操作,拆卸模块,如左图 ⑫所示。

5 接线

5.1 接线图

5.2 接线端子定义

		全桥	输入		
端子序号	端子标识	说明	端子序号	端子标识	说明
1	A0	通道 0 桥臂电压+	9	A1	通道 0 桥臂电压-
2	NC	空端子	10	NC	空端子
3	A2	通道 0 供桥补偿+	11	A3	通道 0 供桥补偿-
4	NC	空端子	12	NC	空端子
5	A4	通道 0 供桥输出电压+	13	A5	通道 0 供桥输出电压-
6	NC	空端子	14	NC	空端子
7	PE	电源 PE	15	PE	电源 PE
8	PE	电源 PE	16	PE	电源 PE
		半杼	输入		
端子序号	端子标识	说明	端子序号	端子标识	说明
1	В0	通道1桥臂电压+	11	B1	通道1桥臂电压-
2	NC	空端子	12	NC	空端子
3					
5	B2	通道1供桥补偿+	13	В3	通道1供桥补偿-
4	B2 NC	通道 1 供桥补偿+ 空端子	13 14	B3 NC	通道 1 供桥补偿- 空端子
4	NC	空端子	14	NC	空端子
4 5	NC B4	空端子 通道 1 供桥输出电压+	14 15	NC B5	空端子 通道 1 供桥输出电压-
4 5 6	NC B4 NC	空端子 通道 1 供桥输出电压+ 空端子	14 15 16	NC B5 NC	空端子 通道 1 供桥输出电压- 空端子
4 5 6 7	NC B4 NC NC	空端子 通道 1 供桥输出电压+ 空端子 空端子	14 15 16 17	NC B5 NC NC	空端子 通道 1 供桥输出电压- 空端子 空端子

6 使用

6.1 参数设置及功能

模块配置一共有8个参数,4个配置参数相同且可独立设置,以通道0为例介绍配置参数,如下表所示。

功能	参数名	取值范围	默认值
		0: OFF	
		1: FULL_4LINE	
桥路连接方式选择	Bridge Type 0	2: FULL_6LINE	0
		3: HALF_3LINE	
		4: HALF_5LINE	
		0: 5V	
		1: 4.5V	
		2: 4V	
供桥电压选择	Voltage Type 0	3: 3.5V	0
		4: 3V	
		5: 2.5V	
		6: 2V	
		0: NO	
		1: Software Filter Level1	
		2: Software Filter Level2	
		3: Software Filter Level3	
		4: Software Filter Level4	
输入滤波	Filter Level 0	5: Software Filter Level5	0
		6: Hardware Filter Level1	
		7: Hardware Filter Level2	
		8: Hardware Filter Level3	
		9: Hardware Filter Level4	
		10: Hardware Filter Level5	
模式切换	Range Mode 0	0: Extended Range Mode	0

	1: Legacy Range Mode	
--	----------------------	--

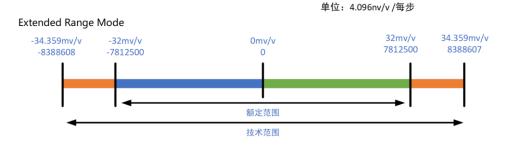
6.1.1 桥路连接方式选择

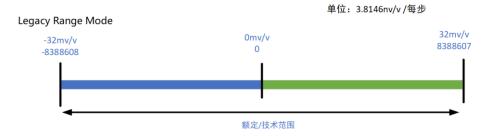
模块支持桥路连接方式选择,桥路的连接方式有全桥 4 线制、全桥 6 线制、半桥 3 线制、半桥 5 线制。 注:接线需要使用屏蔽线并以适当的方式接地。

6.1.2 电压选择

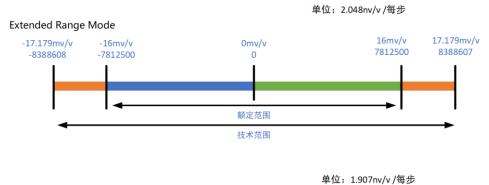
模块支持选择供桥电压,供桥电压有 2V、2.5V、3V、3.5V、4V、4.5V、5V,默认电压为 5V。

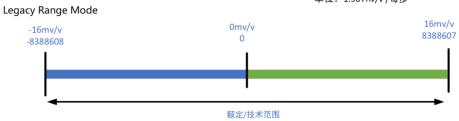
6.1.3 输入滤波


模块支持选择输入滤波,输入滤波有五级软件滤波和五级硬件滤波。


6.1.4 模式切换

模块支持两个量程模式的选择,标准量程模式 Legacy Range Mode 和拓展量程模式 Extended Range Mode,默认模式为拓展量程模式 Extended Range Mode。


在拓展量程模式下,量程超过额定范围,通道指示灯闪烁报警。


全桥 4 线制/6 线制连接测量量程如下图所示:

半桥 3 线制/5 线制连接测量量程如下图所示:

6.2 上下行过程数据及功能

6.2.1 上行数据

	上行	数据 12 字节		
名称	含义	取值范围	数据类型	长度
Channel 0	通道 0 应变采集值	-2^31~2^31-1	Signed32	4 字节
Warning 0	通道0告警	0~100	Signed16	2 字节
Channel 1	通道 1 应变采集值	-2^31~2^31-1	Signed32	4 字节
Warning 1	通道1告警	0~100	Signed16	2 字节

数据说明:

◆ 应变采集值 Channel [n]

当输入通道有应变力输入时,可以采样分析得出应变力采集值。

◆ 告警 Warning [n]

当应变力调整至最大(负极性),通道上溢时,上行数据通道值显示 8388607,采集次数累加,上限 100次;当应变力调整至最大(正极性),通道下溢时,上行数据通道值显示-8388608,采集次数累加,上限 100次。

6.2.2 下行数据

	T	下行数据 4 字节		
名称	含义	取值范围	数据类型	长度
Error 0	通道 0 应变校准值	-2^15~2^15-1	Signed16	2 字节
Error 1	通道 1 应变校准值	-2^15~2^15-1	Signed16	2 字节

数据说明:

◆ 应变校准值 Error [n]

设定应变校准值是为每个通道数据的手动补偿功能,可根据实际需要在 Error 输入数据补偿值。设置补偿值后,将在上行数据中自动计算补偿后的应变采集值,即上行数据为最终的补偿后的应变采集值。

6.3 模块组态说明

6.3.1 在 TwinCAT3 软件环境下的应用

1、准备工作

● 硬件环境

- ➤ 模块型号 XB6-A20SG
- 电源模块, EtherCAT 耦合器, 盖端本说明以 XB6-P2000H 电源, XB6-EC0002 耦合器为例
- ▶ 计算机一台,预装 TwinCAT3 软件
- ▶ EtherCAT 专用屏蔽电缆
- > 模拟应变量校准器
- > 开关电源一台
- > 模块安装导轨及导轨固定件
- 设备配置文件

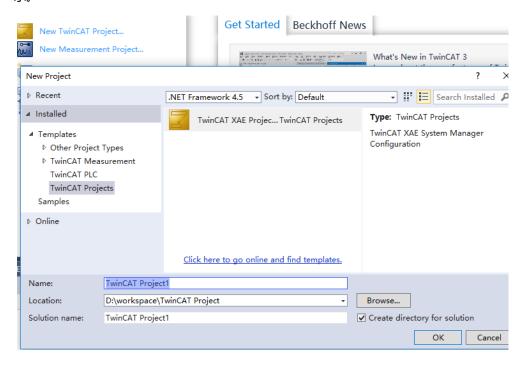
配置文件获取地址: https://www.solidotech.com/documents/configfile

● 硬件组态及接线

请按照"4 安装和拆卸""5 接线"要求操作

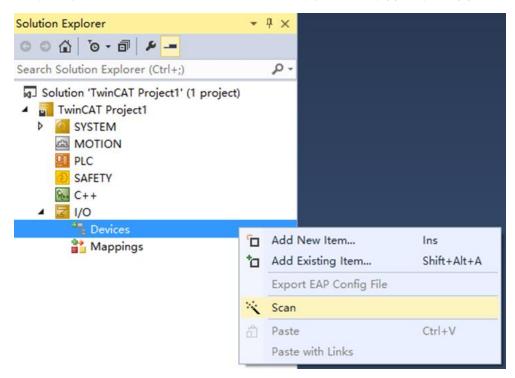
2、预置配置文件

将 ESI 配置文件(EcatTerminal-XB6_V3.21_ENUM.xml)放置于 TwinCAT 的安装目录 "C:\TwinCAT\3.1\Config\Io\EtherCAT"下,如下图所示。

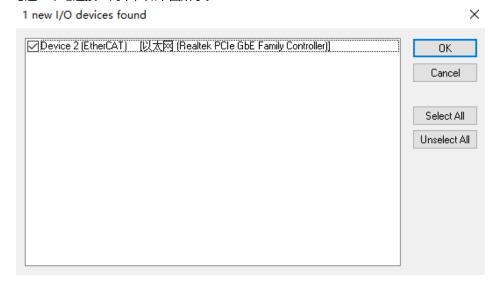

名称	修改日期	类型	大小
☐ Beckhoff EKx9xx.xml	2017/11/3 9:53	XML文档	1,223 KB
Beckhoff EP7xxx.xml	2017/11/8 9:46	XML文档	9,290 KB
Beckhoff ATH2xxx.xml	2017/11/23 13:22	XML文档	439 KB
Beckhoff EPP3xxx.xml	2017/12/8 8:48	XML文档	2,099 KB
Beckhoff EPP1xxx.xml	2017/12/14 11:34	XML文档	480 KB
Beckhoff EL34xx.xml	2017/12/15 15:35	XML文档	5,634 KB
Beckhoff EK13xx.xml	2017/12/19 14:30	XML文档	16 KB
Beckhoff EPP2xxx.xml	2017/12/28 12:22	XML文档	1,811 KB
Beckhoff EJ1xxx.xml	2018/1/4 10:00	XML文档	67 KB
Beckhoff EJ3xxx.xml	2018/1/4 10:07	XML文档	1,169 KB
Beckhoff EJ7xxx.xml	2018/1/4 10:11	XML文档	2,339 KB
Beckhoff EJ9xxx.xml	2018/1/4 10:23	XML文档	160 KB
Beckhoff EJ6xxx.xml	2018/1/4 10:31	XML文档	313 KB
Beckhoff EL30xx.xml	2018/1/11 13:03	XML文档	11,508 KB
Beckhoff EL37xx.xml	2018/1/23 13:59	XML文档	11,837 KB
Beckhoff EJ2xxx.xml	2018/1/23 14:21	XML文档	239 KB
Beckhoff EL5xxx.xml	2018/1/23 15:11	XML文档	6,307 KB
Beckhoff EJ5xxx.xml	2018/1/23 15:12	XML文档	218 KB
Beckhoff EL2xxx.xml	2018/1/24 9:40	XML文档	2,868 KB
Beckhoff EL33xx.xml	2018/1/26 9:34	XML文档	6,727 KB
Beckhoff ELM3xxx.xml	2018/2/1 10:19	XML文档	14,238 KB
Beckhoff AX5xxx.xml	2018/2/8 16:15	XML文档	930 KB
Beckhoff EL1xxx.xml	2018/2/19 17:15	XML文档	3,387 KB
Beckhoff EL25xx.xml	2018/2/21 10:23	XML文档	6,543 KB
EcatTerminal-XB6_V3.21_ENUM.xml	2023/11/10 13:35	XML文档	668 KB

3、创建工程

a. 单击桌面右下角的 TwinCAT 图标,选择"TwinCAT XAE (VS xxxx)",打开 TwinCAT 软件,如下图所示。

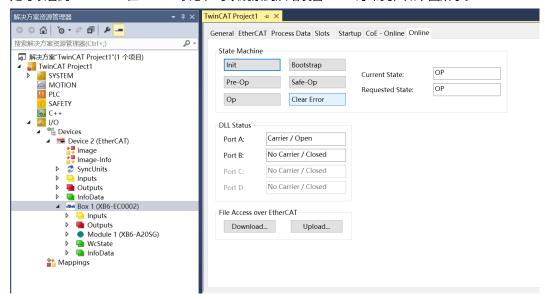


b. 单击 "New TwinCAT Project" ,在弹窗内 "Name" 和 "Solution name" 分别对应项目名称和解决方案名称, "Location" 对应项目路径,此三项可选择默认,然后单击"OK",项目创建成功,如下图所示。

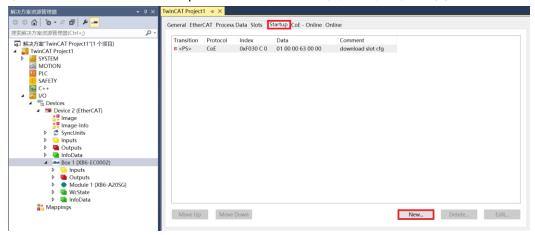


4、扫描设备

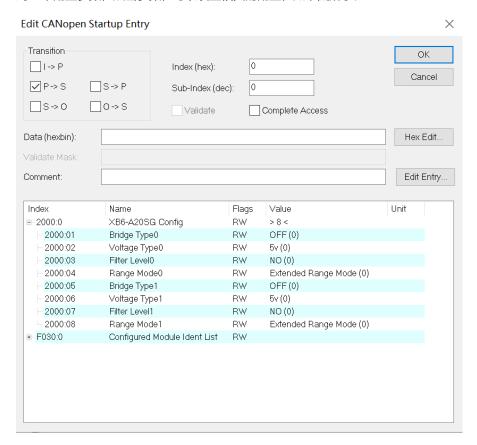
a. 创建项目后,在"I/O-> Devices"下右击"Scan"选项,进行从站设备扫描,如下图所示。


b. 勾选"本地连接"网卡,如下图所示。

c. 弹窗 "Scan for boxes" ,单击选择 "是" ;弹窗 "Activate Free Run" 单击选择 "是" ,如下图所示。 Microsoft Visual Studio × Microsoft Visual Studio



d. 扫描到设备后,左侧导航树可以看到 Box1 (XB6-EC0002) 和 Module1 (XB6-A20SG) ,在 "Online" 处可以看到 TwinCAT 在 "OP"状态,可以观察到从站设备 RUN 灯常亮,如下图所示。



5、参数配置

a. 单击左侧导航树 "Box1 -> Startup -> New" 可以进入配置参数编辑页面,如下图所示。

b. 在 Edit CANopen Startup Entry 弹窗中,单击 Index 2000:0 前面的"+",展开配置参数菜单,可以看到 8 个配置参数,点击参数,可以设置相关的配置,如下图所示。

2000:06

2000:07

2000:08

₱ F030:0

Edit CANopen Startup Entry Transition ОК ☐ I -> P 2000 Index (hex): Cancel ✓ P-> S ☐ S-> P Sub-Index (dec): 0->S S->0 Validate Complete Access Data (hexbin): 00 00 00 00 Hex Edit. Voltage Type0 Edit Entry. Comment: Flags Unit Index Name Value ≘-2000:0 XB6-A20SG Config RW > 8 < 2000:01 Bridge Type0 OFF (0) 2000:02 Voltage Type0 RW 5v (0) -2000:03 Filter Level0 Set Value Dialog \times 2000:04 Range Mod 2000:05 Bridge Type

Dec:

Hex:

Enum:

Bool:

Binary:

Bit Size

Voltage Typ

Filter Level1

Range Mod

Configured

0

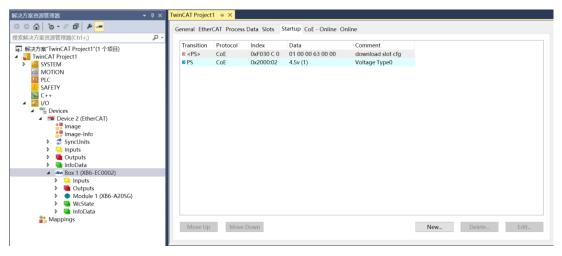
4٧

3.5v

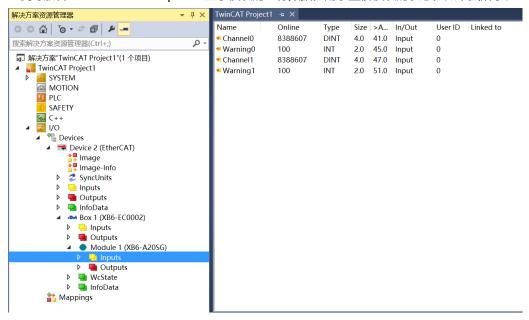
2.5v

0x00000000

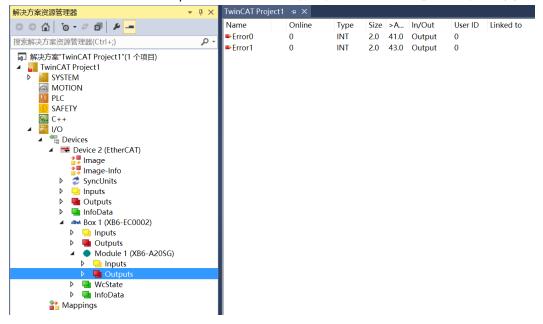
例如修改通道 0 的供桥电压,可以双击"Voltage Type",在下拉框中修改参数值,如下图所示。


参数修改完成后,可在 Startup 下方看到修改后的参数项和参数值,如下图所示。参数设置完成后,需进 行 Reload 操作及模块重新上电,实现主站自动下发参数设定。

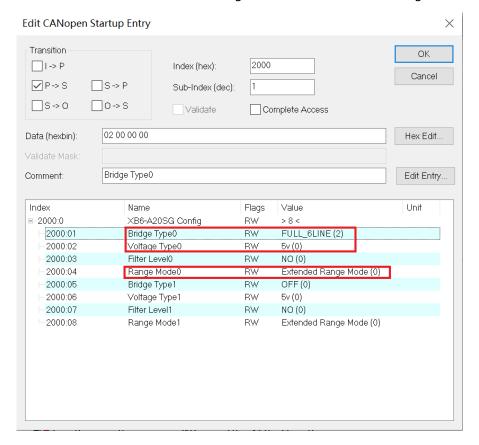
ΟK


Cancel

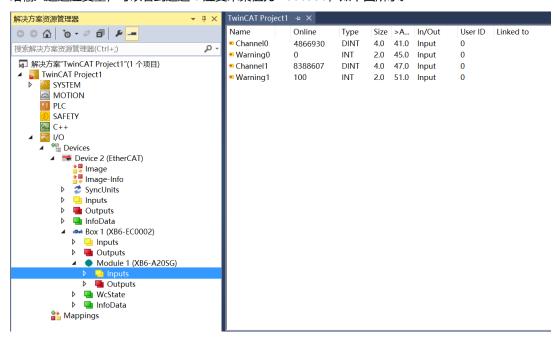
Edit...


4

e. 左侧导航树"Module 1 -> Inputs"显示模块的上行数据,用于监视模块的状态,如下图所示。



f. 左侧导航树 "Module 1 -> Outputs"显示模块的下行数据,用于控制模块的输出状态,如下图所示。



6、验证基本功能

- a. 对配置参数进行配置,如下图所示。
 - a) 通道 0 桥路连接方式设置为全桥 6 线制,即 Bridge Type0 设置为 FULL_6LINE;
 - b) 通道 0 供桥电压设置为 5V, 即 Voltage Type0 设置为 5;
 - c) 通道 0 模式设置为拓展量程模式,即 Range Mode0 设置为 Extended Range Mode;

b. 给输入通道应变量,可以看到通道 0 应变采集值为 4866930,如下图所示。

