


IO-Link 主站 IOL7-PN01B-8A-1 用户手册



#### 版权所有 © 南京实点电子科技有限公司 2024。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

#### 商标声明

spot 和其它实点商标均为南京实点电子科技有限公司的商标。

本文档提及的其它所有商标或注册商标,由各自的所有人拥有。

#### 注意

您购买的产品、服务或特性等应受实点公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,实点公司对本文档内容不做任何明示或默示的声明或保证。由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

#### 南京实点电子科技有限公司

地址: 江苏省南京市江宁区胜利路 91 号昂鹰大厦 11 楼

邮编: 211106 电话: 4007788929

网址: http://www.solidotech.com

## 目 录

| 1 | 产品概   | 述               | 1  |
|---|-------|-----------------|----|
|   | 1.1   | 产品简介            | 1  |
|   | 1.2   | 产品特性            | 1  |
| 2 | 命名规   | [列]             | 3  |
|   | 2.1   | 命名规则            | 3  |
|   | 2.2   | 型号列表            | 3  |
| 3 | 产品参   | 数数              | 4  |
|   | 3.1   | 通用参数            | 2  |
|   | 3.2   | 数字量参数           | 5  |
| 4 | 面板    |                 | 6  |
|   | 4.1   | 产品结构            | 6  |
|   | 4.2   | 指示灯功能           | 7  |
|   | 4.3   | 总线接口定义          | 8  |
|   | 4.4   | 电源接口定义          | 8  |
|   | 4.5   | I/O 接口定义        | 8  |
| 5 | 安装和   | 接线              | 9  |
|   | 5.1   | 外形尺寸图           | 9  |
|   | 5.2   | 安装环境要求          | 10 |
|   | 5.3   | 模块安装            | 10 |
|   | 5.4   | 接线指导            | 11 |
|   | 5.4.1 | 电源接口接线图         | 11 |
|   | 5.4.2 | I/O 接口接线图       | 11 |
| 6 | 电源供   | 给规则             | 12 |
|   | 6.1   | 直接供电规则          | 12 |
|   | 6.2   | 串联供电规则          | 14 |
| 7 | 使用    |                 | 15 |
|   | 7.1   | 参数与过程数据说明       | 15 |
|   | 7.1.1 | 输出清空保持功能        | 15 |
|   | 7.1.2 | Pin2 电路过流恢复模式功能 | 15 |
|   | 7.1.3 | ISDU 远程配置功能     | 16 |

| 7   | 7.1.4 | DI/DO/IO-Link 模式功能               | 17 |
|-----|-------|----------------------------------|----|
| 7   | '.1.5 | 上下行过程数据                          | 17 |
| 7.2 |       | PROFINET 主站组态应用                  | 18 |
| 7   | 7.2.1 | 在 TIA Portal V17 软件环境下的应用        | 18 |
| 7   | 7.2.2 | 在 STEP 7-MicroWIN SMART 软件环境下的应用 | 38 |
| 7.3 |       | 定制数据长度模块                         | 51 |
| 7   | 7.3.1 | PROFINET 主站定制模块                  | 51 |
| 8 F | AQ    |                                  | 52 |
| 8.1 |       | 更新可访问的设备时,查找不到设备                 | 52 |
| 8.2 |       | 下载组态时装载按钮为灰色                     | 52 |
| 9 阵 | 寸录    |                                  | 53 |
| 9.1 |       | 附录 A                             | 53 |
| 9.2 |       | 附录 B                             | 55 |
| 9.3 |       | 附录 C                             | 56 |
| 9.4 |       | WHR D                            | 57 |

1 产品概述

## 1.1 产品简介

IOL7-PN01B-8A-1 是 IOL7 系列主站 IP67 模块,标准 IO 架构的 IO-Link 主站设备,总线侧支持 PROFINET 工业以太网总线接口,用户侧支持 IO-Link 协议,是属于总线从站以及 IO-Link 主站的网关设备。无论是总线接口还是 IO-Link 接口,都可以和多个厂商的设备对接,兼容性高,为用户数据采集、优化系统配置、简化现场配线、提高系统可靠性等提供多种选择。

## 1.2 产品特性

- 高达 IP67 防护等级 适用于严苛的工业环境
- 标准化

基于 IO-Link 标准 V1.1.3,可远程控制 IO-Link 从站设备,操作方便

● IO-Link 通信

具有8个IO-Link端口,最多可连接8个IO-Link设备(Class-A类型)

参数设定

设备参数备份: 自动恢复连接的 IO-Link 设备参数

端口参数备份: 开启后, 系统自动备份端口初次连接的从站配置参数, 后续接入该端口的从站均按此备份参数运行

● 短路过流保护

Pin2 (DO 模式)和 Pin4 (DO 模式)具有短路过流保护功能

- Pin2 支持过流恢复支持自动恢复和手动恢复
- 兼容性高

支持具有特殊过程数据长度的从站设备

● 体积小巧

适用于空间狭小的应用

● 易诊断

创新的通道指示灯设计,紧贴通道,Pin2 和 Pin4 通信状态一目了然,检测、维护方便

- 易组态 组态配置简单,支持各大主流 PLC
- 布线简单快捷 采用标准电缆接线简单

2 命名规则

## 2.1 命名规则

$$\frac{10L}{(1)}\frac{7}{(2)} - \frac{PN}{(3)}\frac{01}{(4)}\frac{B}{(5)} - \frac{8A}{(6)}\frac{-1}{(7)}$$

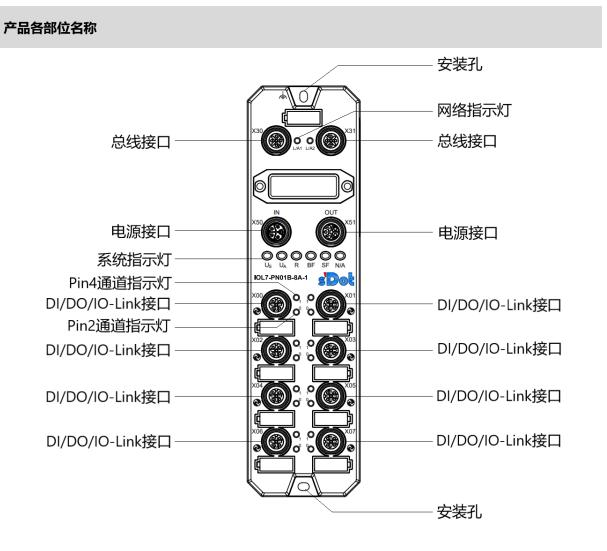
| 编号         | 含义              | 取值说明                         |  |  |
|------------|-----------------|------------------------------|--|--|
| (1)        | 产品技术            | IOL: IO-Link 简称              |  |  |
| (2)        | 防护等级            | 7: IP67                      |  |  |
| (2)        | 54.645147A      | EC: EtherCAT 协议简称            |  |  |
| (3)        | 总线协议            | PN:PROFINET 协议简称             |  |  |
| (4)        | 产品序号 01: 产品系列序号 |                              |  |  |
| <b>(F)</b> | /= 口光刊          | A: NPN                       |  |  |
| (5)        | 信号类型            | B: PNP                       |  |  |
| (6)        | I/O 接口          | 8A:8 x Class-A 端口            |  |  |
| (7)        | · ·             | 省略: 首版主站模块                   |  |  |
| (7)        | 产品版本            | -1: 升级版主站模块 (Pin2 新增 DO 功能等) |  |  |

## 2.2 型号列表

| 型号              | 产品描述                                     |  |  |
|-----------------|------------------------------------------|--|--|
| IOL7-PN01B-8A-1 | PROFINET 总线协议 8 x Class-A 端口的 IO-Link 主站 |  |  |

# 3 产品参数

## 3.1 通用参数

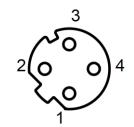

| 接口参数               |                           |  |  |
|--------------------|---------------------------|--|--|
| 总线协议               | PROFINET                  |  |  |
| 总线接口               | 2 x M12-D,4Pin,孔端,蓝色      |  |  |
| 电气隔离               | 500 VAC                   |  |  |
| I/O 站数             | 根据主站                      |  |  |
| 数据传输介质             | 5 类以上的 UTP 或 STP (推荐 STP) |  |  |
| 传输距离               | ≤100 m (站站距离)             |  |  |
| 传输速率               | 100 Mbps                  |  |  |
| 技术参数               |                           |  |  |
| 组态方式               | 通过主站                      |  |  |
| 电源接口               | 2 x M12-L,5Pin,针端&孔端,红色   |  |  |
| 供电电源               | 24 VDC (18V~30V)          |  |  |
| Us总电流              | Max: 9A                   |  |  |
| Us消耗电流             | ≤100 mA                   |  |  |
| U <sub>A</sub> 总电流 | Max: 9A                   |  |  |
| UA消耗电流             | 0 mA                      |  |  |
| 电源反极性保护            | 支持                        |  |  |
| 重量                 | 480g                      |  |  |
| 尺寸                 | 225×62×35.1mm             |  |  |
| 工作温度               | -25°C~+70°C               |  |  |
| 存储温度               | -40°C~+85°C               |  |  |
| 相对湿度               | 95%,无冷凝                   |  |  |
| 防护等级               | IP67                      |  |  |

## 3.2 数字量参数

| 产品型号             | IOL7-PN01B-8A-1                                   |  |  |
|------------------|---------------------------------------------------|--|--|
| 总线协议             | PROFINET                                          |  |  |
| 额定电压             | 24 VDC (18V~30V)                                  |  |  |
| DI/DO/IO-Link 接口 | 8 x M12-A,5Pin,孔端                                 |  |  |
| IO-Link 通道数      | 8                                                 |  |  |
| IO-Link 版本       | V1.1.3                                            |  |  |
| IO-Link 传输速率     | COM1 (4.8kbps) 、COM2 (38.4kbps) 、COM3 (230.4kbps) |  |  |
| 输入通道数            | 最大 16                                             |  |  |
| 输入信号类型           | PNP                                               |  |  |
| 输入滤波             | 支持,固定配置为 3ms                                      |  |  |
| 输入电流             | 200 mA                                            |  |  |
| 输出最大通道数          | 最大 16                                             |  |  |
| 单通道输出最大电流        | Pin4: 0.5A                                        |  |  |
| 中                | Pin2: 2A                                          |  |  |
| 输出信号类型           | PNP                                               |  |  |
| 负载类型             | 阻性负载、感性负载                                         |  |  |
| 输出总电流            | U <sub>S</sub> 、U <sub>A</sub> 最大 9 A             |  |  |
| 端口防护             | 过流保护                                              |  |  |
| 隔离方式             | U <sub>S</sub> 和 U <sub>A</sub> 不隔离               |  |  |
| 通道指示灯            | 支持                                                |  |  |

## **4** 面板

## 4.1 产品结构



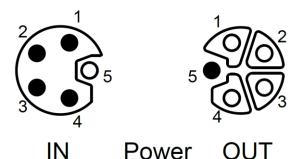

## 4.2 指示灯功能

| 名称               | 标识             | 颜色       | 状态   | 状态描述                       |
|------------------|----------------|----------|------|----------------------------|
|                  | L/A1           | 绿色       | 常亮   | 建立网络连接                     |
| 网络指示灯 IN         |                |          | 闪烁   | 网络连接并有数据交互                 |
|                  |                |          | 熄灭   | 无数据交互或异常                   |
|                  |                |          | 常亮   | 建立网络连接                     |
| 网络指示灯 OUT        | L/A2           | 绿色       | 闪烁   | 网络连接并有数据交互                 |
|                  |                |          | 熄灭   | 无数据交互或异常                   |
|                  |                |          | 绿色常亮 | 电源供电正常                     |
| 系统电源指示灯          | Us             | 绿色/红色    | 红色闪烁 | 系统电源供电大于 11V 且小于 18V       |
|                  |                |          | 熄灭   | 产品未上电或电源供电异常               |
|                  |                |          | 绿色常亮 | 电源供电正常                     |
| 辅助电源指示灯          | U <sub>A</sub> | 绿色/红色    | 红色闪烁 | 辅助电源大于 11V 且小于 18V         |
|                  |                |          | 熄灭   | 产品未上电或电源供电异常               |
| <br>  运行状态指示灯    | R              | 绿色       | 常亮   | 系统正常运行                     |
| 色114人心相小人        | N.             |          | 熄灭   | 工作异常                       |
| <br>  系统异常指示灯    | SF             | 红色       | 常亮   | PROFINET 主站系统工作出现异常        |
| 余纸并带相小N]         |                |          | 熄灭   | PROFINET 主站系统正常运行或未上电      |
|                  | BF             | 红色       | 常亮   | 无网络连接                      |
| 总线异常指示灯          |                |          | 闪烁   | 与控制器未建立 PROFINET 连接        |
|                  |                |          | 熄灭   | 与控制器建立 PROFINET 连接         |
|                  |                | 黄色/红色/绿色 | 黄色常亮 | Pin4 输入或输出的状态为 1           |
|                  | 1              |          | 红色常亮 | Pin4 过流                    |
| <br>  Pin4 通道指示灯 |                |          | 红色闪烁 | IO-Link 错误                 |
|                  |                | 與巴/红巴/绿巴 | 绿色常亮 | IO-Link 通信连接成功             |
|                  |                |          | 绿色闪烁 | IO-Link 通信未连接              |
|                  |                |          | 熄灭   | Pin4 输入或输出的状态为 0           |
|                  |                |          | 黄色常亮 | Pin2 输入或输出的状态为 1           |
| Pin2 通道指示灯       | 0              | 黄色/红色    | 红色常亮 | Pin2 过流                    |
| 「川と畑垣田小り」        |                |          | 红色闪烁 | Pin1 过流 (LED1 与 LED0 同时闪烁) |
|                  |                |          | 熄灭   | Pin2 输入或输出的状态为 0           |

## 4.3 总线接口定义

## 总线接口连接视图 (M12-D, 孔端)



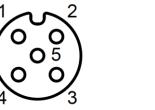

## 定义说明

| Pin | 功能         |
|-----|------------|
| 1   | TX+,发送用数据+ |
| 2   | RX+,接收用数据+ |
| 3   | TX-,发送用数据- |
| 4   | RX-,接收用数据- |

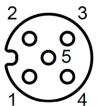
Bus

## 4.4 电源接口定义

## 电源接口连接视图 (M12-L, 针端&孔端)




#### 定义说明


| Pin | 功能                  | 线芯颜色 |  |
|-----|---------------------|------|--|
| 1   | +24V U <sub>S</sub> | 棕    |  |
| 2   | 0V GND <sub>A</sub> | 白    |  |
| 3   | 0V GNDs             | 蓝    |  |
| 4   | +24V U <sub>A</sub> | 黑    |  |
| 5   | PE                  | 灰    |  |

## 4.5 I/O接口定义

## I/O 接口连接视图 (M12-A, 孔端)

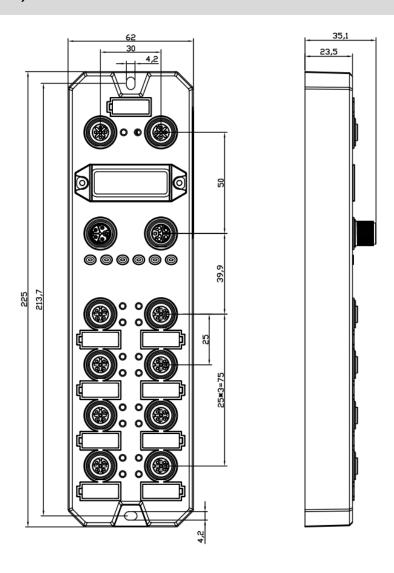


**IO-Link** 



| Pin             | 功能                  | 线芯颜色 |  |
|-----------------|---------------------|------|--|
| 1               | +24V U <sub>S</sub> | 棕    |  |
| 2 DI/DO         |                     | 白    |  |
| 3               | 0V GNDs             | 蓝    |  |
| 4 DI/DO/IO-Linl |                     | 黑    |  |
| 5 PE            |                     | 灰    |  |

定义说明


## ● 注意事项

- Pin1 和 Pin3 电源来自于系统供电 Us, Pin4 信号输出供电也由 Us提供。
- Pin2 电源来自于 UA, Class-A 接口若不使用 Pin2 输出功能, UA 可不接。

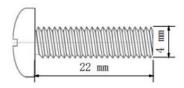
## 5 安装和接线

## 5.1 外形尺寸图

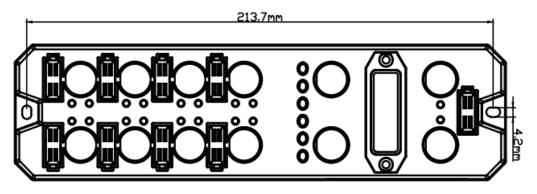
## 外形规格 (单位 mm)



版权所有 © 南京实点电子科技有限公司 2024


## 5.2 安装环境要求

为充分发挥 IOL7 模块的性能,提升其可靠性,请避免安装在以下场所:

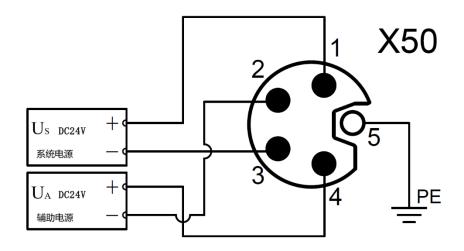

- 日光直射的场所
- 环境温度或相对湿度超出模块规格的场所
- 有腐蚀性气体、可燃性气体的场所
- 有酸、油、化学药品飞沫的场所
- 有粉尘、铁屑、火星飞溅的场所
- 直接致模块本体遭受冲击、震动的场所
- 有强电场、磁场、辐射、静电干扰的场所
- 附近有动力线、交流强电线的场所

## 5.3 模块安装

◆ 请选用 M4\*22mm 及以上规格的螺丝对模块本体进行紧固安装。



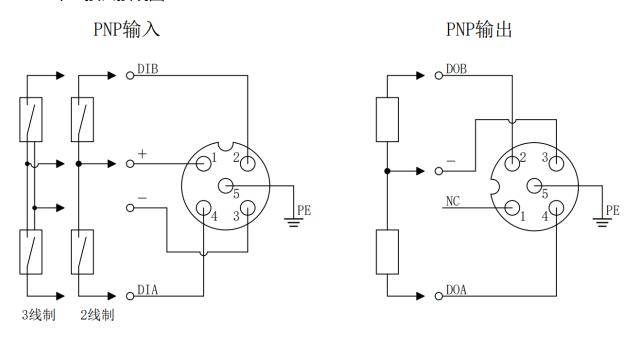
◆ 模块的安装孔位尺寸如下图所示。




## ← 注意事项

- 模块上的透明盖子为预留的旋转开关罩盖,出厂时罩盖已紧固,请不要随意拆卸以免破坏 IP67 防护等级。
- 请正确固定模块,如固定不牢可能由于震动导致故障发生。

## 5.4 接线指导


## 5.4.1 电源接口接线图

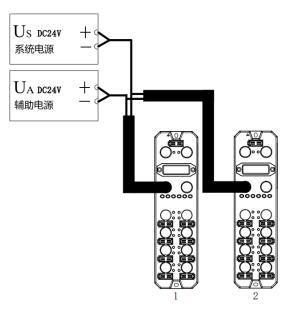


## 🗲 注意事项

- 推荐系统电源和辅助电源分别采用不同的开关电源进行供电,保证运行的稳定性。
- 电源供给规则请参考 "电源供给规则" 章节。

## 5.4.2 I/O 接口接线图




## ● 注意事项

● 请在未使用的连接器接口上安装模块配套的防水帽并拧紧,以免破坏 IP67 防护等级。

## 6 电源供给规则

## 6.1 直接供电规则

每个模块的电源都从开关电源直接接入,不使用 OUT 接口。每个模块的 Us 消耗电流的总和应≤9A,UA 消耗电流的总和应≤9A。



电源电缆中的压降根据模块电源的消耗电流总和以及线缆材质不同而有差异,下表为使用我司标配线缆时的压降。

| 电源的消耗电流总和(A) | 不同线缆长度时的压降(V) |      |      |      |  |
|--------------|---------------|------|------|------|--|
| 电源则用粘电源态和(A) | 1m            | 3m   | 5m   | 10m  |  |
| 8            | 0.64          | 1.12 | 1.60 | 2.72 |  |
| 7            | 0.56          | 0.98 | 1.40 | 2.38 |  |
| 6            | 0.48          | 0.84 | 1.20 | 2.04 |  |
| 5            | 0.40          | 0.70 | 1.00 | 1.70 |  |
| 4            | 0.32          | 0.56 | 0.80 | 1.36 |  |
| 3            | 0.24          | 0.42 | 0.60 | 1.02 |  |
| 2            | 0.16          | 0.28 | 0.40 | 0.68 |  |

| 1 | 0.08 | Λ 1 <i>/</i>       | 0.20 | 0.34 |
|---|------|--------------------|------|------|
| • | 0.00 | U. 1 <del>-7</del> | 0.20 | 0.5- |

## ■ 直接供电时模块总消耗电流计算示例

例如两模块均为 IOL7-PN01B-8A-1, 各模块使用情况如下表所示:

| 模块名称 | I/O 端口 |        |               | 外部连接设备      |             |  |
|------|--------|--------|---------------|-------------|-------------|--|
|      | 端口名称   | Pin 名称 | I/O 模式        | 品名          | 规格          |  |
| 模块 1 | 端口 1~8 | Pin4   | DI (输入电流 4mA) | 2 45-+7/土成場 | 消耗电流: 30mA  |  |
|      |        | Pin2   | DI (输入电流 4mA) | 3 线式传感器     | 消耗电流: 30mA  |  |
| 模块 2 | 端口 1~8 | Pin4   | DO            | 电磁阀         | 负载电流: 500mA |  |
|      |        | Pin2   | DO            | 电磁阀         | 负载电流: 500mA |  |

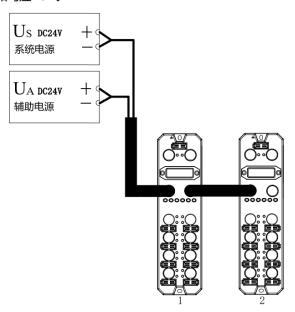
## 计算总消耗电流,单个模块计算电流如下表所示:

| 模块名称       | 电源类型                | 总消耗电流计算项目           | 计算结果                       |  |
|------------|---------------------|---------------------|----------------------------|--|
|            | 系统电源 Us             | 系统消耗电流              | 模块系统侧功耗 35mA               |  |
|            | 系统电源 Us             |                     | 对于所有端口                     |  |
| <br>  模块 1 |                     | 模块输入电流及传感器消耗电流      | (传感器消耗电流) + (通道输入电流 * 输    |  |
| 1天/八       |                     |                     | 入点数)                       |  |
|            |                     |                     | = (30mA * 16) + (4mA * 16) |  |
|            |                     |                     | = 544 mA                   |  |
|            | 系统电源 Us             | 系统消耗电流 模块系统侧功耗 35mA |                            |  |
|            | 系统电源 Us             |                     | 对于端口 1~8 Pin4              |  |
|            |                     | Pin4 负载输出电流         | 通道输出电流 * 输出点数              |  |
|            |                     |                     | = 500mA * 8                |  |
| 模块 2       |                     |                     | = 4A                       |  |
|            | 辅助电源 U <sub>A</sub> |                     | 对于端口 1~8 Pin2              |  |
|            |                     | Pin2 负载输出电流         | 通道输出电流 * 输出点数              |  |
|            |                     |                     | = 500mA * 8                |  |
|            |                     |                     | = 4A                       |  |

#### 综上,每个模块的消耗电流如下:

• 对于系统电源 Us, 每个模块消耗电流为 35mA。

模块 1 (IOL7-PN01B-8A-1) 的系统电源  $U_s$  消耗电流为 35mA+544mA=579mA,小于模块系统电源  $U_s$  最大电流 9A。


模块 2 (IOL7-PN01B-8A-1) 的系统电源  $U_S$  消耗电流为 35mA + 4A = 4.035A,小于模块系统电源  $U_S$  最大电流 9A。

模块 2 (IOL7-PN01B-8A-1) 的辅助电源  $U_A$  消耗电流为 4A,小于模块辅助电源  $U_A$  最大电流 9A。

在此示例中,由于每个模块的 Us 消耗电流的总和≤9A, UA 消耗电流的总和≤9A, 所以满足要求。

## 6.2 串联供电规则

模块之间通过 OUT 接口串联供电,每个模块的  $U_s$  消耗电流的总和应 $\le 9A$ , $U_A$  消耗电流的总和应 $\le 9A$ ,所有模块的  $U_s$  和  $U_A$  的消耗电流总和均应 $\le 9A$ 。



串联供电时,模块内部会有串联模块的消耗电流流过,因此会在模块内部回路中产生电压降。电源电缆中的压 降根据模块电源的消耗电流总和以及线缆材质不同而有差异,下表为使用我司标配线缆时的压降。

| 由语格学托由法普和(A) | ## <b>##########</b> ######################## | 不同线缆长度时的压降(V) |      |      |      |
|--------------|-----------------------------------------------|---------------|------|------|------|
| 电源的消耗电流总和(A) | 模块内部回路中的压降(V)                                 | 1m            | 3m   | 5m   | 10m  |
| 9            | 0.36                                          | 0.72          | 1.26 | 1.80 | 3.06 |
| 8            | 0.32                                          | 0.64          | 1.12 | 1.60 | 2.72 |
| 7            | 0.28                                          | 0.56          | 0.98 | 1.40 | 2.38 |
| 6            | 0.24                                          | 0.48          | 0.84 | 1.20 | 2.04 |
| 5            | 0.20                                          | 0.40          | 0.70 | 1.00 | 1.70 |
| 4            | 0.16                                          | 0.32          | 0.56 | 0.80 | 1.36 |
| 3            | 0.12                                          | 0.24          | 0.42 | 0.60 | 1.02 |
| 2            | 0.08                                          | 0.16          | 0.28 | 0.40 | 0.68 |
| 1            | 0.04                                          | 0.08          | 0.14 | 0.20 | 0.34 |

## ● 注意事项

- 每个模块的 Us消耗电流的总和应≤9A, UA消耗电流的总和应≤9A。
- 如上图所示,串联供电时所有模块的 Us和 UA的消耗电流总和均应满足"模块 1+模块 2"≤9A的规则。

#### ■ 串联供电时模块总消耗电流计算示例

例如两个模块均为 IOL7-PN01B-8A-1,各模块使用情况与"<u>直接供电时模块总消耗电流计算示例</u>"相同。 计算总消耗电流:

 $U_S = 579mA + 4.035A = 4.614A, U_A = 4A_{\circ}$ 

在此示例中,由于所有模块的 Us 和 UA 的消耗电流总和均满足 "模块 1+模块 2" ≤9A 的规则,所以满足要求。

**7** 使用

## 7.1 参数与过程数据说明

## 7.1.1 输出清空保持功能

清空/保持功能针对各个端口的输出信号,此功能可以配置在总线异常状态下的模块输出动作。支持三种类型操作:

低电平输出 (Clear 0) : 通讯断开时,模块输出通道输出低电平。 高电平输出 (Clear 1) : 通讯断开时,模块输出通道输出高电平。

保持输出:通讯断开时(Hold last value),模块输出通道输出一直保持最后状态电平。

## 7.1.2 Pin2 电路过流恢复模式功能

当 Pin2 发生过流故障时,支持自动恢复(Automatic Recovery)和手动恢复(Manual Recovery),可在主站模块参数进行设置,默认为自动恢复。

● PROFINET 主站参数功能以 TIA Portal V17 软件为例介绍配置方法,具体步骤详见 <u>7.2.1 章节中的主站参数配置</u>。

## 7.1.3 ISDU 远程配置功能

PROFINET 主站只支持在组态之前 ISDU 写操作。在操作之前,应获取从站 ISDU 相关信息,具体信息可查看《IOL7 系列集线器用户手册 Vx.xx.pdf》第六章节。

实点从站 IOL7-16CB-M12 支持配置端口方向,输入滤波功能,恢复出厂设置等功能。以下按照端口 1 接从站 IOL7-16CB-M12,且端口 1 状态显示 3(IO-Link OP 状态)为例,介绍这三个功能的配置方法。

#### 1、PROFINET 主站配置 ISDU 参数

由于协议的限制,PROFINET 主站不支持 ISDU 的读操作,仅支持在组态之前 ISDU 写操作。如需多个写操作,可多次下发组态操作,从站通常支持保存配置,且掉电不丢失配置。PROFINET 主站 Index、Subindex、Length 字段只能填入十进制 DEC 值,且不需要 Control 项。

**例 1**: 配置 IOL7-16CB-M12 前 8 个通道为输入,后 8 个通道为输出。参考**《IOL7 系列集线器用户手册** \_**Vx.xx.pdf》**6.5.2 章节,Index 设置为 66(0x0042)、Subindex 设置为 0(0x00)、Length 设置为 2 (0x02)、Data 设置为 00FF。

**例 2**: 配置 IOL7-16CB-M12 前 8 个通道为输入滤波 3.2ms,后 8 个通道输入滤波关闭。参考**《IOL7 系列集线器用户手册\_Vx.xx.pdf》**6.5.8 章节,Index 设置为 73(0x0049)、Subindex 设置为 0(0x00)、Length 设置为 16(0x10)、Data 设置为 05050505050505050508080808080808。

**例 3**: 恢复 IOL7-16CB-M12 出厂设置。参考**《IOL7 系列集线器用户手册\_Vx.xx.pdf》**6.3 章节, Index 设置为 2(0x0002)、Subindex 设置为 0(0x00)0x00、Length 设置为 1(0x01)、Data 设置为 82。

● PROFINET 主站 ISDU 配置功能以 TIA Portal V17 软件为例介绍配置方法,具体步骤详见 <u>7.2.1 章节中的</u> ISDU 参数配置。

## 7.1.4 DI/DO/IO-Link 模式功能

#### 1、端口 DI/DO 模式

◆ 01 系列 PROFINET 主站各个端口 Pin2 和 Pin4 均支持标准 DI/DO 模式,在模块中选择对应标准 DI、标准 DO 模式即可,默认标准 DI 模式。

#### 2、端口 IO-Link 模式

- ◆ 01 系列 PROFINET 主站各个端口 Pin4 支持 IO-Link 模式。
- ◆ 正常情况下,从站过程数据长度应和配置对应的模块数据长度保持一致,但也可兼容。例如:从站过程数据为输入2字节,模块也可以选择输入大于2字节,如输入4字节;但不可以选择输入小于2字节,设备状态会提示输入长度不匹配。

从站数据长度值参考<u>附录 C</u>。如果未有对应从站数据长度模块,则可选择长度值大于从站数据长度的模块;或根据 7.3 定制数据长度模块,选择从站数据长度模块。

● PROFINET 主站 DI/DO/IO-Link 模式功能以 TIA Portal V17 软件为例介绍配置方法,具体步骤详见 7.2.1 章节中的 DI/DO/IO-Link 设置。

## 7.1.5 上下行过程数据

PROFINET 主站 IOL7-PN01B-8A-1 型号的 Slot0 数据定义表:

| 类型                 | 字节偏移 | 长度   | 描述                 |  |
|--------------------|------|------|--------------------|--|
|                    | 0    | 1字节  | 端口 Pin2 标准输入模式输入值  |  |
|                    | 1    | 1 字节 | 端口 Pin4 标准输入模式输入值  |  |
|                    | 2    | 1 字节 | 端口 0 设备状态          |  |
|                    | 3    | 1 字节 | 端口1 设备状态           |  |
|                    | 4    | 1字节  | 端口 2 设备状态          |  |
|                    | 5    | 1字节  | 端口3设备状态            |  |
| 输入过程数据 (12 字节)<br> | 6    | 1字节  | 端口 4 设备状态          |  |
|                    | 7    | 1字节  | 端口 5 设备状态          |  |
|                    | 8    | 1字节  | 端口 6 设备状态          |  |
|                    | 9    | 1字节  | 端口7 设备状态           |  |
|                    | 10   | 1字节  | 主站状态               |  |
|                    | 11   | 1字节  | 输入数据有效性,默认 0xFF,预留 |  |
| 松山过租粉块(2 字类)       | 0    | 1字节  | 端口 Pin2 标准输出模式输出值  |  |
| 輸出过程数据 (2 字节)<br>  | 1    | 1字节  | 端口 Pin4 标准输出模式输出值  |  |

注:端口状态详见附录 B。

## 7.2 PROFINET主站组态应用

## 7.2.1 在 TIA Portal V17 软件环境下的应用

#### 1、准备工作

#### ● 硬件环境

- 模块型号以 IOL7-PN01B-8A-1 为例X00 端口接入 IOL7 从站模块 IOL7-16CB-M12
- ▶ 计算机一台, 预装 TIA Portal V17 软件
- ▶ PROFINET 专用屏蔽电缆
- ▶ 西门子 PLC 一台,本说明以西门子 S7-1200 CPU 1214C DC/DC/DC 为例
- > 开关电源一台
- > 设备配置文件

配置文件获取地址: <a href="https://www.solidotech.com/cn/resources/configuration-files">https://www.solidotech.com/cn/resources/configuration-files</a>

● 硬件组态及接线

请按照"5 安装和接线"要求操作

## 2、新建工程

a. 打开 TIA Portal V17 软件, 单击"创建新项目", 各项信息输入完成后单击"创建", 如下图所示。



◆ 项目名称: 自定义, 可保持默认。

◆ 路径:项目保持路径,可保持默认。

◆ 版本:可保持默认。◆ 作者:可保持默认。

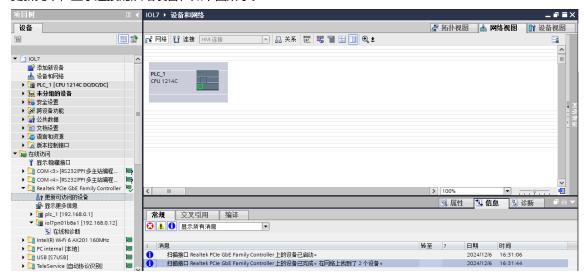
◆ 注释: 自定义, 可不填写。

#### 3、添加 PLC 控制器

a. 单击"组态设备",如下图所示。



b. 单击"添加新设备",选择当前所使用的 PLC 型号,单击"添加",如下图所示。添加完成后可查看到 PLC 已经添加至设备导航树中。

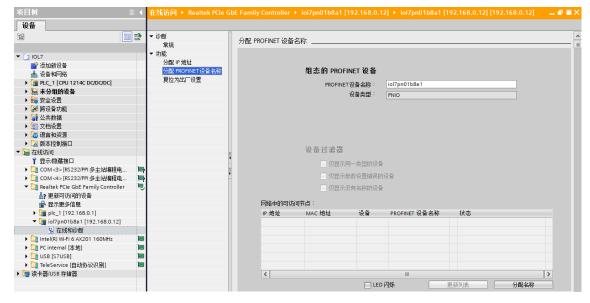



## 4、扫描连接设备

a. 单击左侧导航树 "在线访问 -> 更新可访问的设备" , 如下图所示。

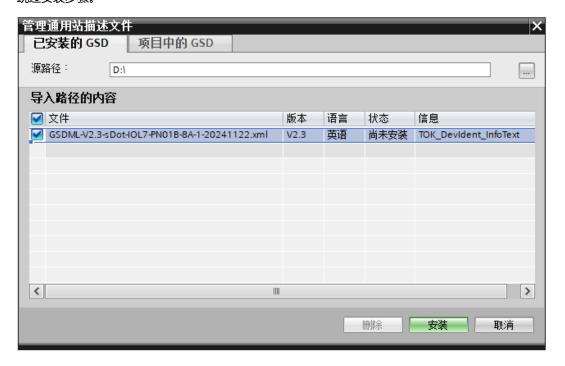


b. 更新完毕,显示连接的从站设备,如下图所示。



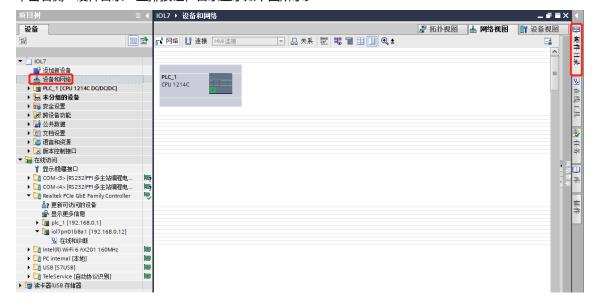

电脑的 IP 地址必须和 PLC 在同一网段,若不在同一网段,修改电脑 IP 地址后,重复上述步骤。

c. 双击左侧导航树从站设备下的"在线和诊断",在"功能"菜单下可以分配当前从站的 IP 地址及设配名称。单击"分配 IP 地址",先填写"子网掩码",再填写"IP 地址",单击最下方的"分配 IP 地址",如下图所示。

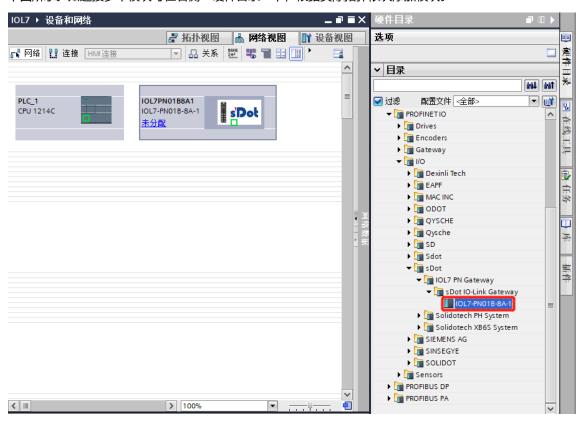



d. 单击 "分配 PROFINET 设备名称",填写 "PROFINET 设备名称",单击 "分配名称",如下图所示。

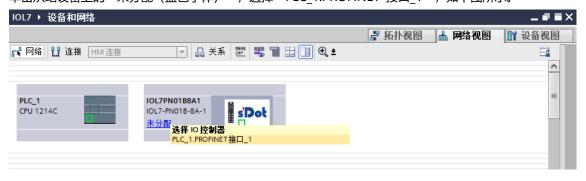



## 5、添加 GSD 配置文件

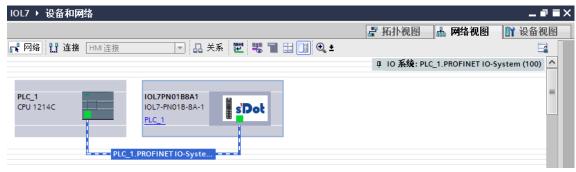
- a. 菜单栏中,选择"选项->管理通用站描述文件(GSDML)(D)"。
- b. 单击"源路径"选择存放 GSD 文件的文件夹。
- c. 查看要添加的 GSD 文件的状态是否为"尚未安装",未安装单击"安装",若已安装,单击"取消", 跳过安装步骤。



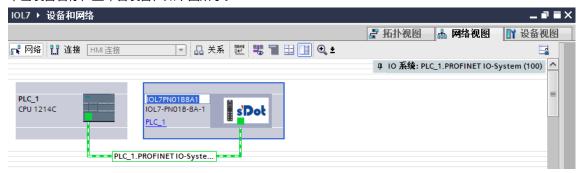

## 6、添加从站设备


- a. 双击左侧导航树"设备与网络"。
- b. 单击右侧"硬件目录"竖排按钮,目录显示如下图所示。




c. 在硬件目录下找到 "IOL7-PN01B-8A-1" 模块,拖动或双击 "IOL7-PN01B-8A-1" 至 "网络视图",如下图所示。如连接多个模块可在右侧"硬件目录"下,根据实际拓扑依次添加模块。



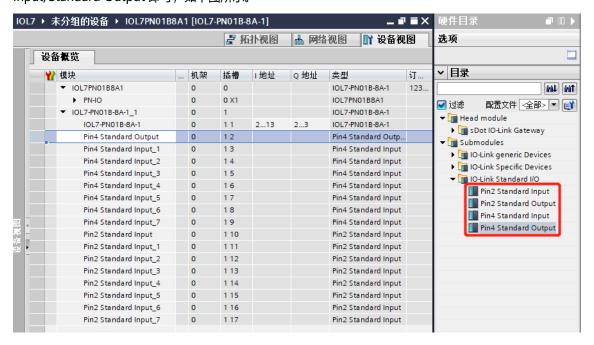

d. 单击从站设备上的"未分配 (蓝色字体)",选择"PLC 1.PROFINET 接口 1",如下图所示。



e. 连接完成后,如下图所示。



f. 单击设备名称, 重命名设备, 如下图所示。

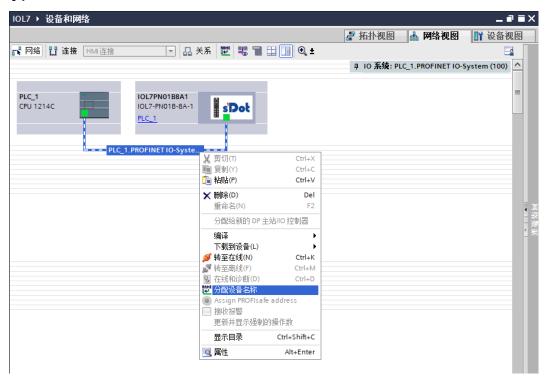



#### 7、DI/DO/IO-Link 设置

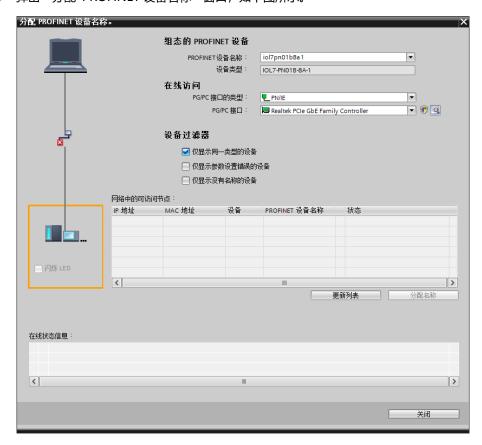
a. 单击 "设备视图" 进入设备概览,可以看到拓扑组态信息,包括系统自动分配的 I/O 地址,I/O 地址可以自行更改,如下图所示。Pin4 Standard Input ~ Pin4 Standard Input 7 可配置 DI/DO/IO-Link,Pin2 Standard Input ~ Pin2 Standard Input 7 可配置 DI/DO。



b. 主站模块 IOL7-PN01B-8A-1 配置 DI/DO 时,选择 X00~X07 端口对应 Pin4/Pin2 Standard Input ~ Pin4/Pin2 Standard Input 7,右击删除后,在右侧"硬件目录"下双击添加 Pin4/Pin2 Standard Input/Standard Output 即可,如下图所示。



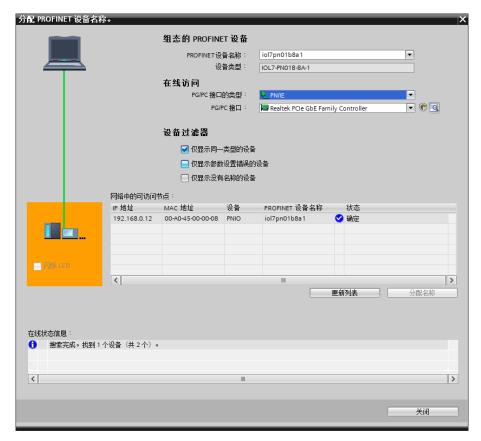

c. 主站模块 IOL7-PN01B-8A-1 的 X00 端口 Pin4 接入了 IOL7-16CB-M12 模块,在右侧"硬件目录"下找 到模块,右击"Pin4 Standard Input"选择"删除"后,双击"IOL7\_16CB"添加 IOL7 从站到组态,如 下图所示。




## 8、分配设备名称

a. 切换到"网络视图",右击 PLC 和模块 IOL7-PN01B-8A-1 的连接线,选择"分配设备名称",如下图所示。

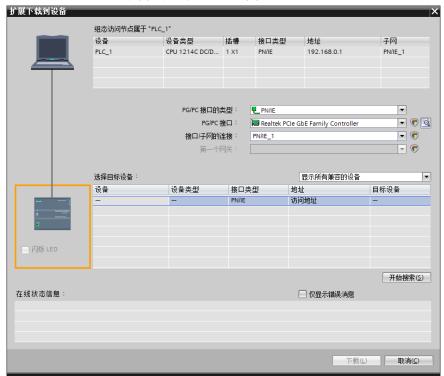



b. 弹出"分配 PROFINET 设备名称"窗口,如下图所示。

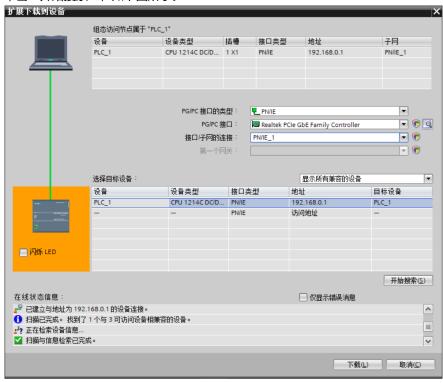


版权所有 © 南京实点电子科技有限公司 2024

查看模块丝印上的 MAC 地址是否与所分配设备名称的 MAC 地址相同。


- ◆ PROFINET 设备名称: "分配 PROFINET 设备名称"中设置的名称。
- ◆ PG/PC 接口的类型: PN/IE。
- ◆ PG/PC 接口:实际使用的网络适配器。
- c. 依次选择从站设备,单击"更新列表",单击"分配名称"。查看"网络中的可访问节点"中,节点的状态是否为"确定",如下图所示。




d. 单击"关闭"。

## 9、下载组态结构

- a. 在"网络视图"中,选中PLC。
- b. 单击菜单栏中的 🔃 按钮,将当前组态下载到 PLC 中。
- c. 在弹出的"扩展下载到设备"界面,配置如下图所示。



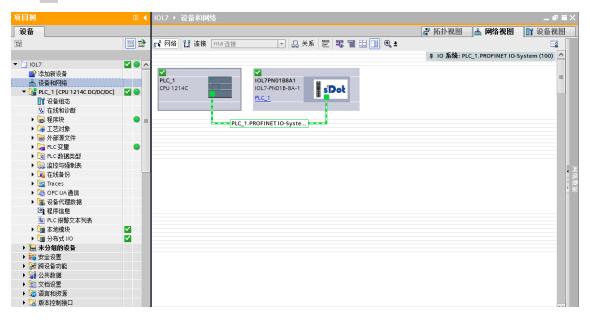
d. 单击"开始搜索",如下图所示。



e. 单击 "下载"。

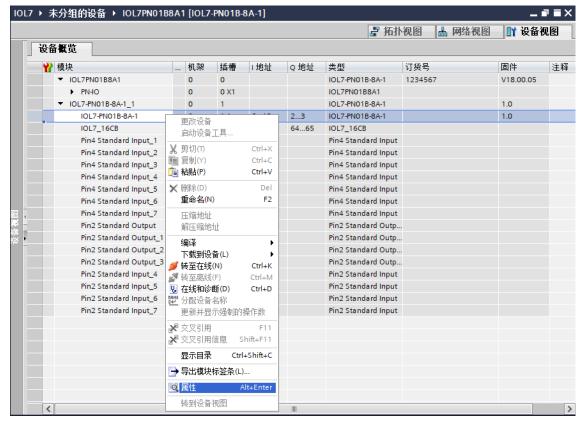
f. 选择"在不同步的情况下继续",如下图所示。



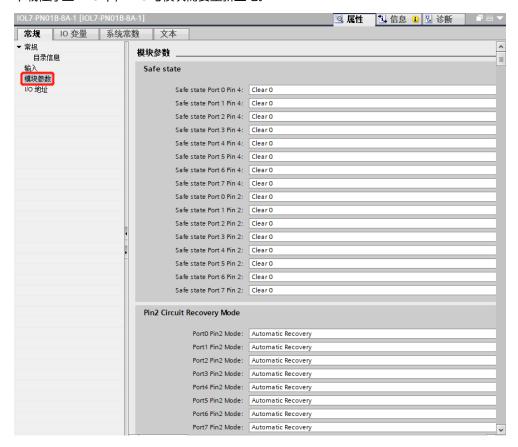

g. 选择"全部停止"。



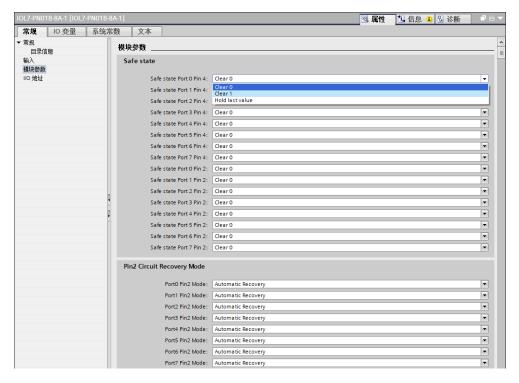
- h. 单击"装载"。
- i. 单击"完成"。
- j. 将设备重新上电。


## 10、 通讯连接

a. 单击 🌆 按钮,之后单击"转至在线",图标均为绿色即连接成功,如下图所示。

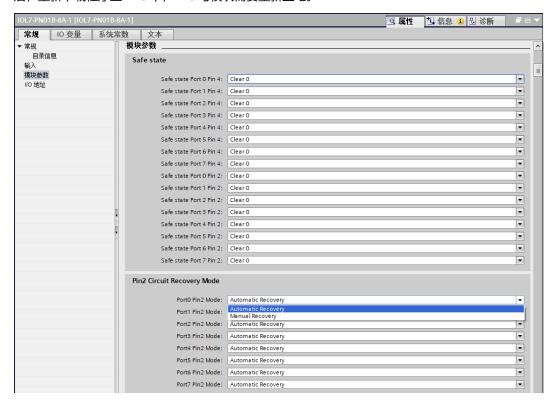



#### 11、 主站参数配置


a. 打开"设备视图",在离线状态下,右击模块名称"IOL7-PN01B-8A-1",单击"属性",如下图所示。

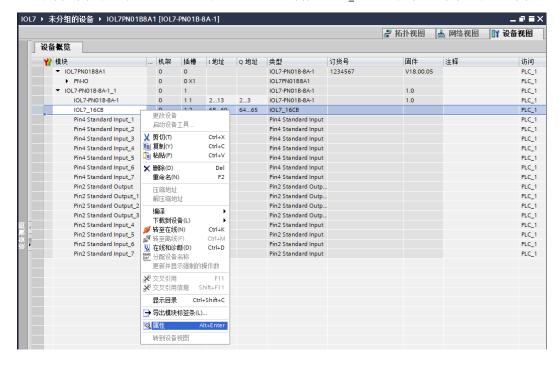


b. 在属性页面,单击"模块参数",如下图所示。参数可以根据实际使用需要进行配置,配置完成后,重新下载程序至 PLC 中,PLC 与模块需要重新上电。

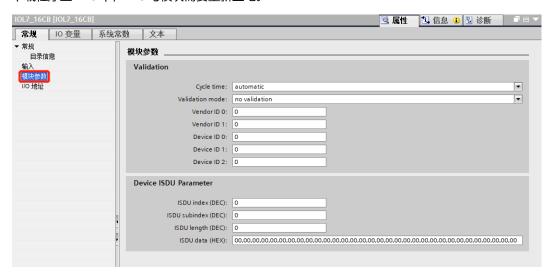



c. 清空保持功能设置方法:以 Port 0 Pin4 为例,在模块 IOL7-PN01B-8A-1 的参数页面,单击 "Safe state Port 0 Pin 4"右侧的单选框,进行设置选择,如下图所示。配置完成后,重新下载程序至 PLC 中,PLC 与模块需要重新上电。




版权所有 © 南京实点电子科技有限公司 2024

d. Pin2 过流恢复功能设置方法:以 Port 0 Pin2 为例,在模块 IOL7-PN01B-8A-1 的参数页面,单击 Pin2 Circuit Recovery Mode 中 "Port0 Pin2 Mode"右侧的单选框,进行设置选择,如下图所示。配置完成后,重新下载程序至 PLC 中,PLC 与模块需要重新上电。

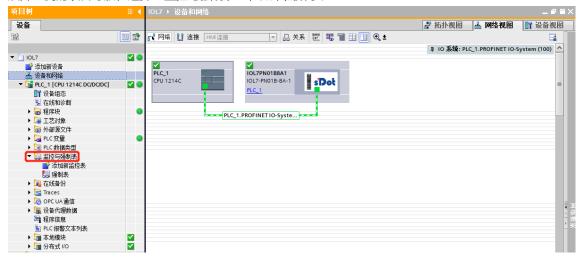



## 12、 从站 ISDU 参数配置

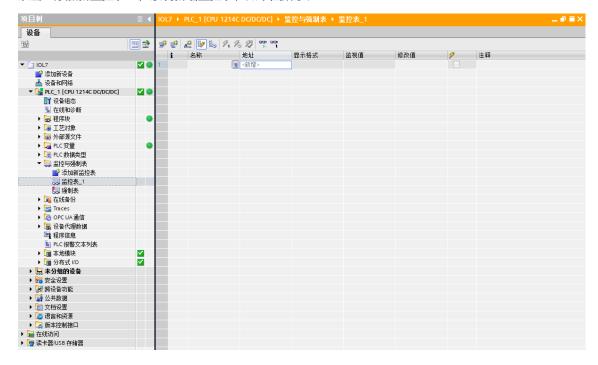
a. 在"设备视图"页面,在离线状态下,右击从站模块名称"IOL\_16CB",单击"属性",如下图所示。



b. 在属性页面,单击"模块参数",如下图所示。参数可以根据实际使用需要进行配置,配置完成后,重新下载程序至 PLC 中,PLC 与模块需要重新上电。




c. 以配置 IOL7-16CB-M12 前 8 个通道为输入,后 8 个通道为输出为例,参考《IOL7 系列集线器用户手册\_\_Vx.xx.pdf》6.5.2 章节,需要设置 Index 设置为 66(0x0042)、Subindex 设置为 0(0x00)、Length 设置为 2(0x02)、Data 设置为 00FF,如下图所示。配置完成后,重新下载程序至 PLC 中,PLC 与模块需要重新上电。




## 13、 功能验证

a. 展开左侧的项目导航,选择"监控与强制表",如下图所示。

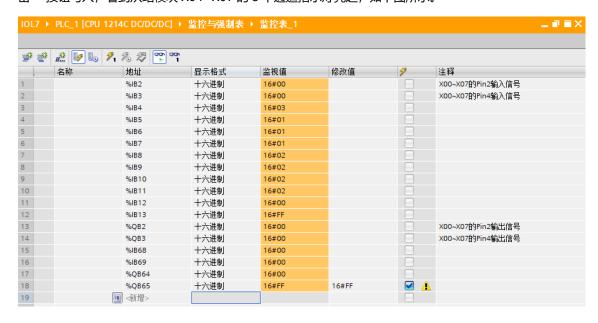


b. 双击"添加新监控表",系统新增监控表,如下图所示。

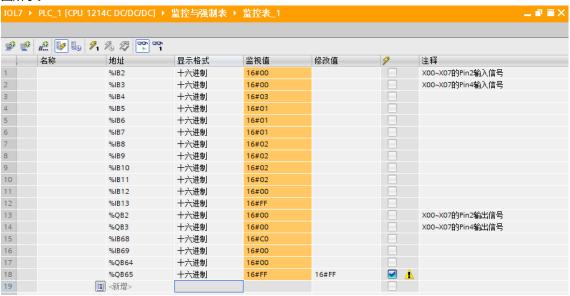


c. 打开"设备视图",查看设备概览中主站模块 IOL7-PN01B-8A-1 的通道 Q 地址(输出信号的通道地址)和 I 地址(输入信号的通道地址),从站模块 IOL7\_16CB 的通道 Q 地址(输出信号的通道地址)和 I 地址(输入信号的通道地址)。

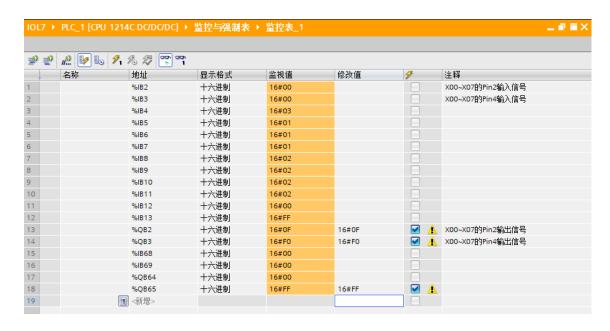
例如查看到 IOL7-PN01B-8A-1 模块的 "Q 地址" 为 2, "I 地址" 为 2~13; 从站模块 IOL7\_16CB 的 "Q 地址" 为 64~65, "I 地址" 为 68~69, 如下图所示。



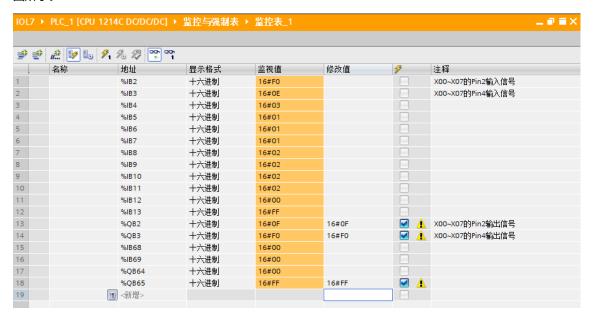

主站模块 IOL7-PN01B-8A-1 的 IB2 表示 X00~X07 的 Pin2 输入信号监视值,IB3 表示 X00~X07 的 Pin4 输入信号监视值,IB4~IB13 表示模块状态信息;默认主站模块 I/O 接口均为输入通道,当主站模块 有接口配置为输出通道时,QB2 表示 X00~X07 的 Pin2 输出信号,QB3 表示 X00~X07 的 Pin4 输出信号。


d. 在监控表的地址单元格填写输入输出通道地址,按"回车键",全部填写完毕后,单击 按钮,对数据进行监控,如下图所示。




e. 以配置 IOL7-16CB-M12 前 8 个通道为输入,后 8 个通道为输出为例,IB68 表示从站模块 X00~X03 的输入信号值,QB65 表示从站模块 X04~X07 的输出信号值。在 QB65 的"修改值"单元格输入"FF",单击 按钮写入,看到从站模块 X04~X07 的 8 个通道指示灯亮起,如下图所示。




f. 当从站模块 X00 输入有效电压时,可以在 IB68 中监视到输入值 "16#C0" 即为 "2#11000000" ,如下 图所示。



g. 在 IOL7-PN01B-8A-1 的 X00~X03 的 Pin2 输出信号 1、X04~X07 的 Pin4 输出信号 1,即 QB2 输入 "0F"、QB3 输入 "F0",单击<sup>24</sup> 按钮写入,看到模块对应的 8 个通道指示灯亮起,如下图所示。



h. 当 IOL7-PN01B-8A-1 的 X04~X07 的 Pin2 和 X01~X03 的 Pin4 输入有效信号时,可以在 IB2 中监视到输入值 "16#F0" 即为 "2#11110000",在 IB3 中监视到输入值 "16#0E" 即为 "2#00001110",如下图所示。

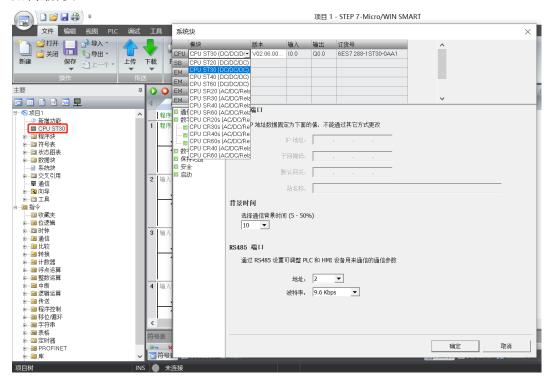


## 7.2.2 在 STEP 7-MicroWIN SMART 软件环境下的应用

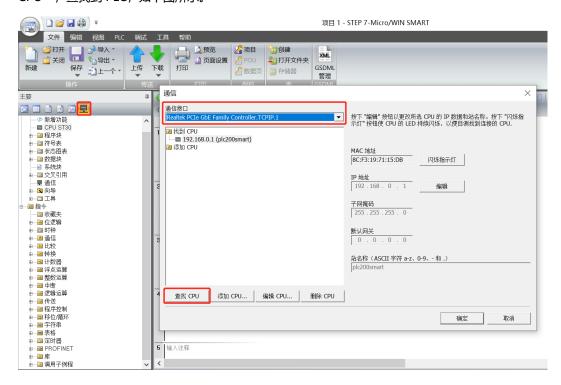
#### 1、准备工作

#### ● 硬件环境

- ▶ 模块型号 IOL7-PN01B-8A-1 X00 端口接入 IOL7 从站模块 IOL7-16CB-M12
- ▶ 计算机一台,预装 STEP 7-MicroWIN SMART V2.6 软件
- ▶ PROFINET 专用屏蔽电缆
- ▶ 西门子 PLC 一台,本说明以西门子 S7-200 SMART 为例
- > 开关电源一台
- > 设备配置文件


配置文件获取地址: https://www.solidotech.com/cn/resources/configuration-files

● 硬件组态及接线

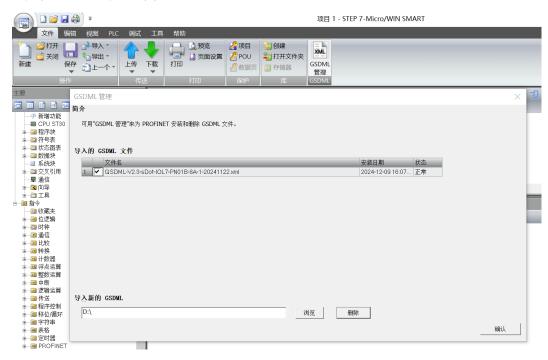

请按照"5 安装和接线"要求操作

## 2、添加 PLC

- a. 打开 STEP 7-MicroWIN SMART 软件。
- b. 双击左侧导航树 CPU ST30 按钮, 弹出"系统块"窗口,选择 PLC 对应的 CPU 型号,单击"确定",如下图所示。

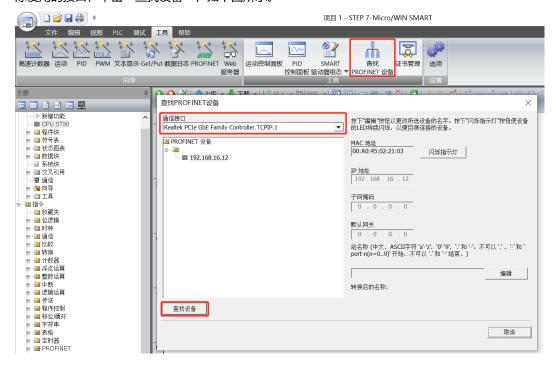


c. 单击左侧导航树 通信按钮,弹出"通信"窗口,切换通信接口为PLC实际使用的接口,单击"查找CPU",查找到PLC,如下图所示。




d. 单击通信窗口中的"编辑",编辑按钮切换为设置按钮,IP 地址输入框点亮,修改 IP 地址与电脑接口的 IP 地址同网段,修改完成后,再次单击"设置",设置完成后单击"确定",如下图所示。注意:可以只修改电脑以太网接口的 IP 地址,与 PLC 地址同网段即可。




#### 3、导入 GSD 文件

a. 单击菜单栏"文件-> GSDML 管理",单击 GSDML 管理窗口中的"浏览",选择要导入的 GSDML 文件,单击"确认",如下图所示。



## 4、 查找设备

a. 单击菜单栏 "工具 -> 查找 PROFINET 设备",弹出查找 PROFINET 设备窗口,切换通信接口为 PLC 实际使用的接口,单击"查找设备",如下图所示。

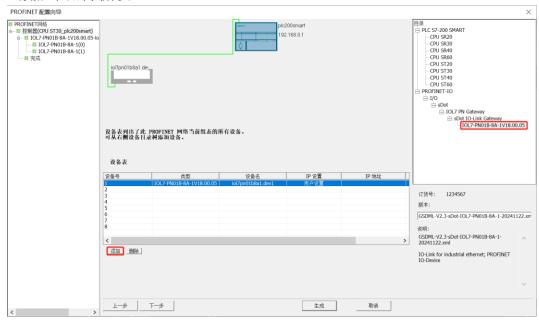


b. 单击"编辑"可以编辑模块名称,编辑完成后,单击"设置",如下图所示。



#### 5、组态 PROFINET 网络

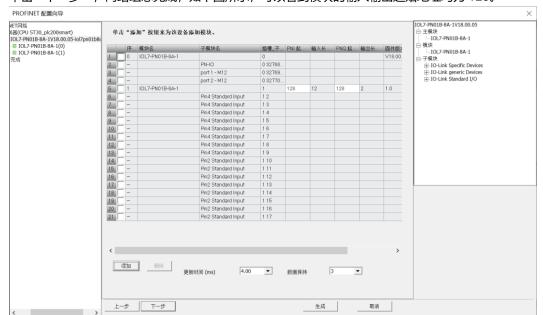
a. 单击菜单栏"工具 -> PROFINET",打开 PROFINET 配置向导,如下图所示。




b. 在 PROFINET 配置向导页面,选择 PLC 的角色为"控制器",如下图所示。



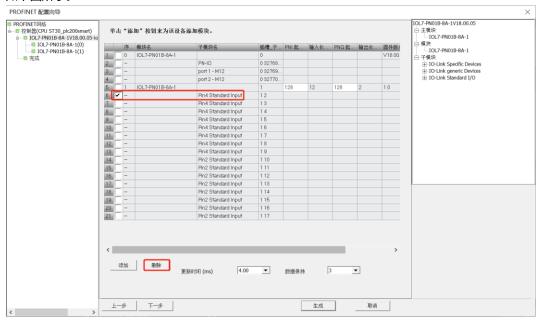
版权所有 © 南京实点电子科技有限公司 2024

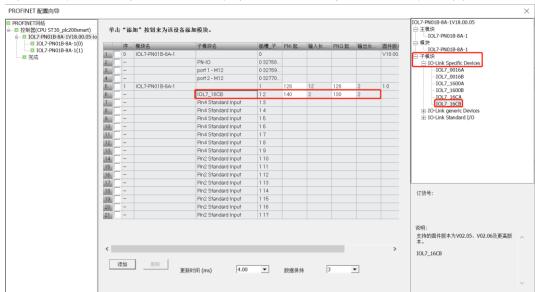

c. 单击"下一步",进入控制器配置页面,从右侧设备目录树中添加设备,选中 IOL7-PN01B-8A-1,单击 "添加",如下图所示。



d. 双击设备名下方的输入框,输入设备名,需要与查找设备时设置的名称一致;双击 IP 地址下方的输入框,输入 IP 地址,输入完成后,如下图所示。如组态中有其他模块,可以以同样的方式添加和配置其他模块。




注意:设备名称需与模块名称一致, IP 地址需设置与 PLC 在同一网段。

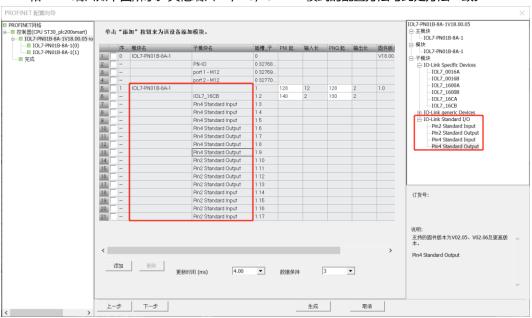



e. 单击"下一步",网络组态完成,如下图所示,可以看到模块的输入输出起始地址均为 128。

#### 6、DI/DO/IO-Link 设置

- a. 主站端口 0 已接入从站模块 IOL7-16CB-M12, 检查 IOL7-16CB-M12 电源灯, 电源灯常亮。
- b. 在 PROFINET 配置向导界面勾选 "Pin4 Standard Input 1 2" , 即选中 IO-Link Port 0 , 单击 "删除" , 如下图所示。



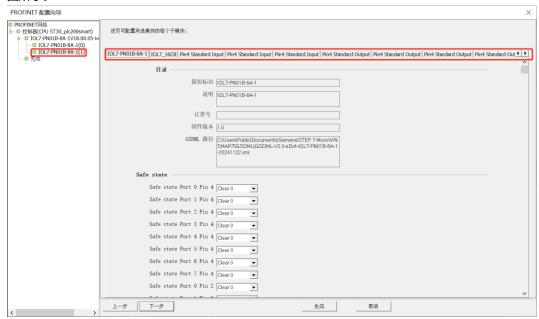



c. 删除完成后,在右侧选中"IOL7-16CB",单击"添加"或选中拖动到 Port 0,如下图所示。

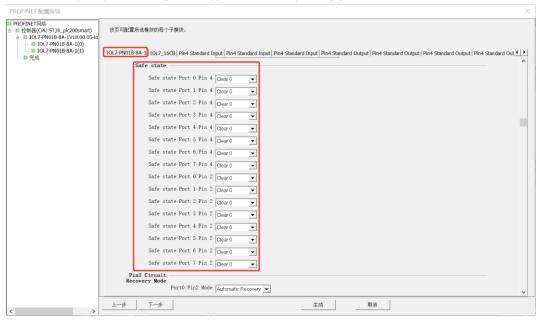
d. 同样的方法将 Pin2 和 Pin4 其他端口配置成 "Pin2/4 Standard Input/Output",配置完成后,左侧 Pin2 和 Pin4 端口如下图所示。其他端口 DI/DO/IO-Link 模式的配置方法与此处方法一致。

生成

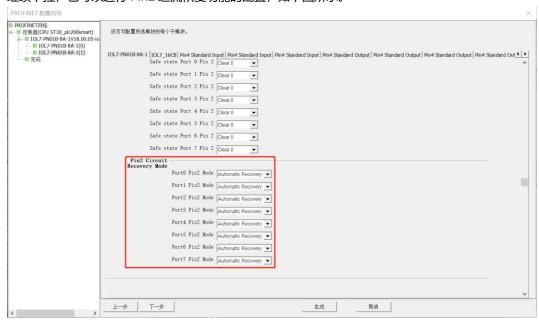
取消



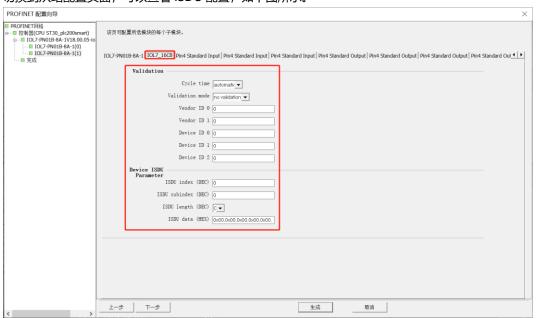

e. 单击"生成",完成组态网络配置;或单击"下一步"进行参数配置。


上一步

## 7、参数配置

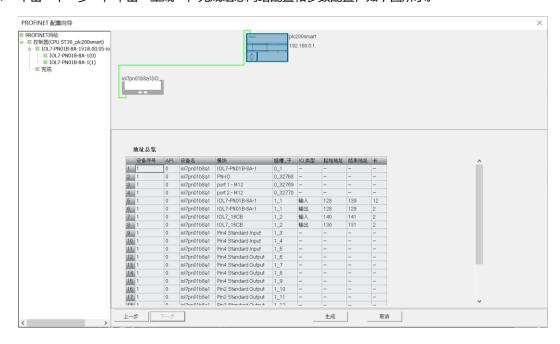

a. 完成 DI/DO/IO-Link 设置后,在 PROFINET 配置向导界面单击"下一步",可以查看和配置参数,如下 图所示。




b. 下拉主站配置页面,可以进行输出清空保持功能的配置,如下图所示。

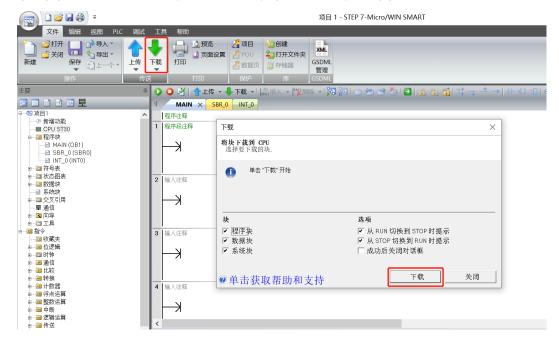


c. 继续下拉,也可以进行 Pin2 过流恢复功能的配置,如下图所示。




d. 切换到从站配置页面,可以查看 ISDU 配置,如下图所示。




注:由于SMART软件原因,不支持修改ISDU参数。

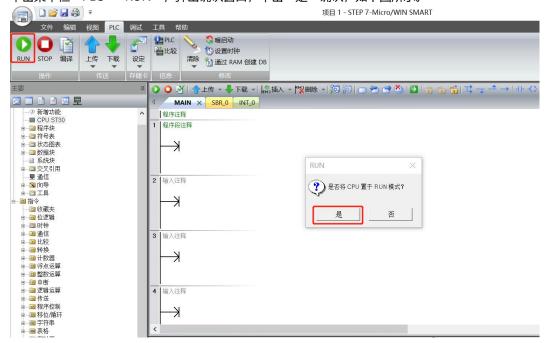
e. 单击"下一步",单击"生成",完成组态网络配置和参数配置,如下图所示。



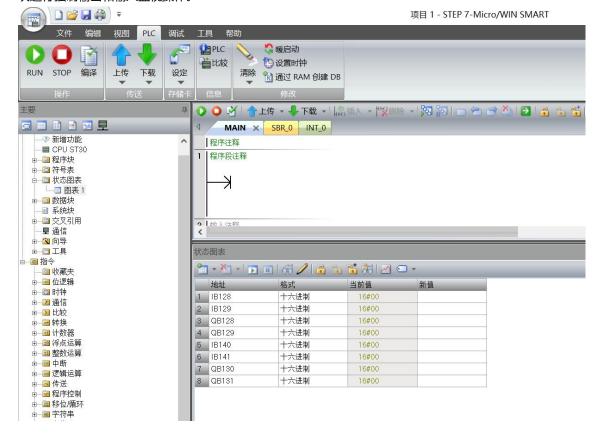
## 8、下载程序

a. 单击菜单栏"文件->下载",弹出下载窗口,单击"下载",如下图所示。

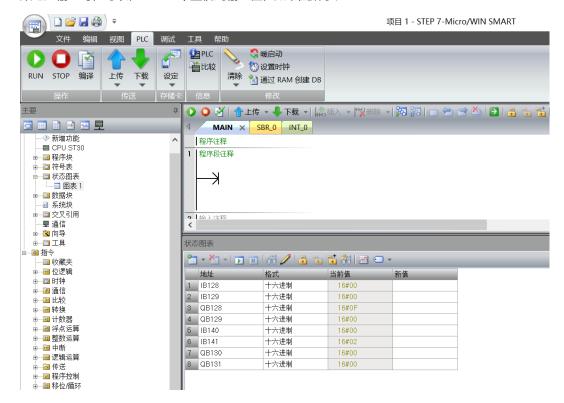



b. 下载窗口提示下载已成功完成后,单击"关闭"。




注:下载完成后,将模块重新上电处理。

## 9、功能验证


a. 单击菜单栏 "PLC -> RUN",弹出确认窗口,单击"是"确认,如下图所示。



b. 单击左侧导航树"状态图表 -> 图表 1",在图表 1 中输入对应通道地址及数据格式,可以在这里对 IO 模块进行强制输出和输入监视操作。



c. 在状态图表的输出行 QB128 对应的新值输入框,可以写入输出值,如写入"0F",则 Port0~3 的 Pin2输出通道值均置为 1, Port0~3 的 Pin2输出通道灯全部亮起。从站模块的 X07 的 Pin2端口输入通道有有效电压输入时,可以在 IB145 中监视到输入值,如下图所示。



注:本例中主站 X00端口 Pin4 接入从站模块设置为 IO-Link 模式, X01~X03的 Pin4设置为 DI 模式, X04~X07的 Pin4设置为 DO 模式。IB129为主站 X01~X03的 Pin4端口输入通道监视地址,QB129为主站 X04~X07的 Pin4端口输出通道监视地址。

X00~X03 的 Pin2 设置为 DO 模式,X04~X07 的 Pin2 设置为 DI 模式。IB128 为主站 X04~X07 的 Pin2 端口输入通道监视地址,QB128 为主站 X00~X03 的 Pin2 端口输出通道监视地址。

QB130 为从站设备 X00~X03 的输出通道监视地址, QB131 为从站设备 X04~X07 的输出通道监视地址, IB140 为从站设备 X00~X03 的输入通道监视地址, IB141 为从站设备 X04~X07 的输入通道监视地址。

## 7.3 定制数据长度模块

附录 A 中不同协议主站定义了不同字节长度的过程数据模块,这些模块基本满足了市场主流从站设备对接需求,但实际使用中仍存在,某些从站设备使用的过程数据长度无法和模块中匹配的现象。例如,某从站具有输入过程数据长度为 16 字节,输出过程数据长度为 32 字节;采用输入过程数据长度为 32 字节输出过程数据长度为 32 字节可兼容,或者定制过程数据长度。本章节介绍如何定制过程数据长度。

## 7.3.1 PROFINET 主站定制模块

PROFINET 主站设备配置文件中"模块"称为子模块,添加定制的子模块,子模块 ID 和过程数据长度等信息可从子模块产品手册中获取后,修改配置文件,更新上位机 GSD 文件即可。

## ← 注意事项

● 在不确定如何实现定制数据长度模块及修改配置文件时,首先请咨询技术支持,请勿随意操作。

8 FAQ

# 8.1 更新可访问的设备时, 查找不到设备

- 1. 确认博图软件正确安装。
- 2. 确认没有其他软件占用博图软件所使用的的网络适配器。
- 3. 确认网线、网卡、网口能够正常工作。
- 4. 确认 IP 地址或者 MAC 地址是否冲突。

## 8.2 下载组态时装载按钮为灰色

- 1. 确认 PLC 中没有强制值。
- 2. 确认 PLC 处于停止状态。

9 附录

# 9.1 附录A

IOL7 系列 PROFINET 主站配置文件中已定义不同字节输入过程数据长度、输出过程数据长度以及输入输出组合过程数据长度的模块,列举如下表所示:

| 名称                 | 描述                          |
|--------------------|-----------------------------|
| Std Input          | 标准输入                        |
| Std Output         | 标准输出                        |
| IOL_I_01 Byte      | 输入过程数据长度 1 字节               |
| IOL_I_02 Byte      | 输入过程数据长度 2 字节               |
| IOL_I_04 Byte      | 输入过程数据长度 4 字节               |
| IOL_I_06 Byte      | 输入过程数据长度 6 字节               |
| IOL_I_08 Byte      | 输入过程数据长度 8 字节               |
| IOL_I_10 Byte      | 输入过程数据长度 10 字节              |
| IOL_I_16 Byte      | 输入过程数据长度 16 字节              |
| IOL_I_24 Byte      | 输入过程数据长度 24 字节              |
| IOL_I_32 Byte      | 输入过程数据长度 32 字节              |
| IOL_O_01 Byte      | 输出过程数据长度 1 字节               |
| IOL_O_02 Byte      | 输出过程数据长度 2 字节               |
| IOL_O_04 Byte      | 输出过程数据长度 4 字节               |
| IOL_O_06 Byte      | 输出过程数据长度 6 字节               |
| IOL_O_08 Byte      | 输出过程数据长度 8 字节               |
| IOL_O_10 Byte      | 输出过程数据长度 10 字节              |
| IOL_O_16 Byte      | 输出过程数据长度 16 字节              |
| IOL_O_24 Byte      | 输出过程数据长度 24 字节              |
| IOL_O_32 Byte      | 输出过程数据长度 32 字节              |
| IOL_I/O_01/01 Byte | 输入过程数据长度1字节、输出过程数据长度1字节     |
| IOL_I/O_02/02 Byte | 输入过程数据长度 2 字节、输出过程数据长度 2 字节 |
| IOL_I/O_02/04 Byte | 输入过程数据长度 2 字节、输出过程数据长度 4 字节 |
| IOL_I/O_02/08 Byte | 输入过程数据长度 2 字节、输出过程数据长度 8 字节 |

| 输入过程数据长度4字节、输出过程数据长度2字节       |
|-------------------------------|
| 输入过程数据长度 4 字节、输出过程数据长度 4 字节   |
| 输入过程数据长度4字节、输出过程数据长度8字节       |
| 输入过程数据长度 4 字节、输出过程数据长度 16 字节  |
| 输入过程数据长度 4 字节、输出过程数据长度 32 字节  |
| 输入过程数据长度8字节、输出过程数据长度2字节       |
| 输入过程数据长度8字节、输出过程数据长度4字节       |
| 输入过程数据长度8字节、输出过程数据长度8字节       |
| 输入过程数据长度 10 字节、输出过程数据长度 10 字节 |
| 输入过程数据长度 16 字节、输出过程数据长度 4 字节  |
| 输入过程数据长度 16 字节、输出过程数据长度 16 字节 |
| 输入过程数据长度 24 字节、输出过程数据长度 24 字节 |
| 输入过程数据长度 32 字节、输出过程数据长度 4 字节  |
| 输入过程数据长度 32 字节、输出过程数据长度 32 字节 |
|                               |

## 9.2 附录B

IO-Link 端口状态采用 1 字节表示,其中 Bit0...3 表示 IO-Link 端口状态,Bit4...7 表示 IO-Link 端口错误提示。

## Bit0...3 定义如下:

| 值 (DEC) | 描述                  |
|---------|---------------------|
| 0       | 端口未激活               |
| 1       | 端口为输入模式             |
| 2       | 端口为输出模式             |
| 3       | 端口为 IO-Link 模式,通信正常 |
| 4       | 端口为 IO-Link 模式,通信异常 |

## Bit4...7 定义如下:

| 值 (DEC) | 描述            |
|---------|---------------|
| 0       | 无错误           |
| 1       | 看门狗异常         |
| 2       | 缓存溢出          |
| 3       | 无效设备 ID       |
| 4       | 无效厂商 ID       |
| 5       | 无效 IO-Link 版本 |
| 6       | 无效帧能力         |
| 7       | 无效周期时间        |
| 8       | 无效输入过程数据长度    |
| 9       | 无效输出过程数据长度    |
| 10      | 未检测到设备        |
| 11      | PreOP 状态错误    |

例如:端口配置 IO-Link 模式,实际上从站未接入,状态提示 0xA4。端口配置 IO-Link 模式,但输入过程数据长度不匹配,状态提示 0x84。

## IO-Link 主站状态采用 1 字节表示, 定义如下:

| 值 (DEC) | 描述    |
|---------|-------|
| 0       | 无错误   |
| 1       | 欠压    |
| 2       | 过压    |
| 3       | 过流、过载 |
| 4255    | 保留    |

# 9.3 附录C

IO-Link 标准中定义的 1 字节过程数据长度,不同 Bit 表示不同含义,参考《IOL-Interface-Spec\_10002\_V113\_Jun19.pdf》附录 B.1.6。

| Bit | 描述                                               |
|-----|--------------------------------------------------|
| 04  | 长度                                               |
| 5   | 保留                                               |
| 6   | 标准输入或标准输出模式是否支持                                  |
| 7   | Byte 标记位,置位,数据长度表示 04 长度值加 1;未置位,04 长度值表示 Bit 长度 |

不考虑 Bit6, 简单将其值和过程数据长度对应关系表示如下:

| 字节   | 描述                        |
|------|---------------------------|
| 0x01 | 过程数据长度 1 比特,通常标准输入或标准输出使用 |
| 0x08 | 过程数据长度 1 字节               |
| 0x10 | 过程数据长度 2 字节               |
| 0x18 | 过程数据长度 3 字节               |
| 0x83 | 过程数据长度 4 字节               |
| 0x84 | 过程数据长度 5 字节               |
| 0x85 | 过程数据长度6字节                 |
| 0x86 | 过程数据长度 7 字节               |
| 0x87 | 过程数据长度8字节                 |
| 0x88 | 过程数据长度9字节                 |
| 0x89 | 过程数据长度 10 字节              |
| 0x8A | 过程数据长度 11 字节              |
| 0x8B | 过程数据长度 12 字节              |
| 0x8C | 过程数据长度 13 字节              |
| 0x8D | 过程数据长度 14 字节              |
| 0x8E | 过程数据长度 15 字节              |
| 0x8F | 过程数据长度 16 字节              |
| 0x90 | 过程数据长度 17 字节              |
| 0x91 | 过程数据长度 18 字节              |
| 0x92 | 过程数据长度 19 字节              |
| 0x93 | 过程数据长度 20 字节              |
| 0x94 | 过程数据长度 21 字节              |
| 0x95 | 过程数据长度 22 字节              |
| 0x96 | 过程数据长度 23 字节              |
| 0x97 | 过程数据长度 24 字节              |
| 0x98 | 过程数据长度 25 字节              |
| 0x99 | 过程数据长度 26 字节              |
| 0x9A | 过程数据长度 27 字节              |
| 0x9B | 过程数据长度 28 字节              |
| 0x9C | 过程数据长度 29 字节              |

| 0x9D | 过程数据长度 30 字节 |
|------|--------------|
| 0x9E | 过程数据长度 31 字节 |
| 0x9F | 过程数据长度 32 字节 |

# 9.4 附录D

从站 ISDU 有可能返回错误,其中错误码定义如下,可参考《IOL-Interface-Spec\_10002\_V113\_Jun19.pdf》附录 C ErrorTypes。

| 错误码    | 描述           |
|--------|--------------|
| 0x8000 | 设备应用层错误      |
| 0x8011 | 不可获取索引       |
| 0x8012 | 不可获取子索引      |
| 0x8020 | 服务临时不可提供     |
| 0x8021 | 本地控制服务临时不可提供 |
| 0x8022 | 设备控制服务临时不可提供 |
| 0x8023 | 权限错误         |
| 0x8030 | 参数越过范围       |
| 0x8031 | 参数越过限制值      |
| 0x8032 | 参数低于限制值      |
| 0x8033 | 参数长度太长       |
| 0x8034 | 参数长度不够       |
| 0x8035 | 功能不可用        |
| 0x8036 | 功能临时不可用      |
| 0x8040 | 参数集无效        |
| 0x8041 | 参数集不一致       |
| 0x8082 | 应用未准备正常      |
| 0x81xx | 厂商自定义        |